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Abstract—Location-based services for various indoor 
applications are often built upon the results offered by indoor 
positioning systems. Among many positioning approaches, 
Wi-Fi received signal strength indicator fingerprinting based 
techniques are of particular interest because of wide Wi-Fi 
network deployment in many indoor environments. With the 
rapid development of computing resources, many deep 
learning models have been proposed for determining indoor 
mobile objects showing their superiorities compared to 
traditional models. However, the hyperparameter tuning 
procedure for obtaining the most suitable model is very 
challenging and time-consuming. To relax this circumstance, 
this paper presents a utilization of Bayesian Optimization to 
reach the best hyperparameters of a long short-term memory 
regression model for indoor positioning solutions. In addition, 
a combination of two well-known dimensionality reduction 
techniques namely Truncated Singular Value Decomposition 
and Linear Discriminant Analysis is proposed to enhance the 
positioning accuracy. The results produced on a public 
dataset show a considerable improvement of the proposed 
solution over the others in terms of positioning accuracy, i.e., 
the mean distance error improved by 3%, 9%, and 24% 
compared to three state-of-the-art studies.  

Keywords—indoor positioning, long short-term memory, 
Bayesian optimization, dimensionality reduction  

I. INTRODUCTION

Recently, Location-Based Services (LBS) have played 
an increasingly important role in many applications such 
as logistics, people tracking, advertisement, etc. Since the 
LBS are built upon the object location, various positioning 
systems have been developed to enhance the accuracy of 
location estimation. For outdoor positioning, satellite 
based positioning systems have demonstrated their 
obvious advantages compared to other techniques in 
supporting outdoor LBS systems. However, most human 
activities are in indoor environments where satellite 
signals are often not available. Therefore, developing 
indoor positioning schemes has attracted considerable 
interest from researchers [1–5]. 

Many indoor positioning approaches have been 
proposed by utilizing various signal sources such as radio 
signals, visible light, acoustics, inertial sensors, etc. [1–6]. 
A very challenging task when developing a positioning 
solution is obtaining an accurate estimated position while 
maintaining the system at a low cost. Among the existing 
approaches, Wi-Fi Received Signal Strength Indicator 
(RSSI) fingerprinting based techniques are of particular 
interest because of the widespread deployment of Wi-Fi 
networks in many indoor environments as well as personal 
Wi-Fi devices [7]. Wi-Fi RSSI fingerprinting based 
methods operate in two phases: offline training phase and 
online positioning phase. In the training phase, Wi-Fi RSSI 
data are collected at the Reference Points (RPs) in the 
deployment area from nearby Wi-Fi Access Points (APs) 
to establish the radio map. During the positioning phase, 
by comparing the online observed data with the training 
data, the object position is determined based on the 
similarity between them. Although this scheme preserves 
the requirement of low cost for most civil indoor 
positioning systems, achieving accurate positioning 
remains an open challenge for researchers and engineers. 

Traditional indoor fingerprinting based methods often 
make use of deterministic classification techniques, e.g., 
k nearest neighbors [8] or probabilistic based 
approaches [9–11]. Because of the fluctuations of the Wi-
Fi RSSI data in the indoor environment, the latter seems to 
outperform the former because it can efficiently take this 
phenomenon into account. One of the major problems of 
traditional methods is that their computational time for 
delivering positioning estimates changes monotonically 
with the deployment area of the indoor positioning systems. 
This could lead to unexpected positioning errors caused by 
the computational time and the movement of the mobile 
object in real-time applications. Therefore, besides the 
requirement of keeping the positioning systems at a low 
cost, all real-time applications also require short execution 
time to ensure the system scalability while achieving 
accurate location estimates. 
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Recently, with the rapid development of computing 
systems, many solutions have been proposed for Wi-Fi 
Fingerprinting based Indoor Positioning System (WF-IPS) 
by using Artificial Neural Networks (ANN) [12-20]. The 
presented results showcase the effectiveness of ANN 
based positioning models compared to the traditional 
methods. The reason is ANN based models can efficiently 
approximate the nonlinear relationship between the Wi-Fi 
RSSI data and the positions of the mobile object. It seems 
that Deep Learning (DL) based models are the most 
promising approach for performance enhancement of WF-
IPS. However, the manual hyperparameter tuning 
procedure for obtaining the most suitable model is a very 
challenging and time-consuming task. 

Besides the fluctuations due to the changes in the indoor 
environment, Wi-Fi RSSI data are also often affected by 
operations or hardware limitations of Wi-Fi APs as well as 
the Wi-Fi capturing devices to be located. In addition, the 
dimensionality of Wi-Fi data, especially in a wide 
deployment area, is very high leading to a phenomenon 
called “curse of dimensionality” which might degrade the 
performance of the DL model. Therefore, an essential task 
that has to be considered when utilizing DL for WF-IPS is 
data preprocessing such as data cleaning, outlier removal, 
data dimensionality reduction, etc. Several studies have 
shown that dimensionality reduction techniques, e.g., 
Principal Component Analysis (PCA) [21, 22], Truncated 
Singular Value Decomposition (TSVD) [23, 24], or 
autoencoders, can help to improve not only computational 
time but also positioning accuracy. It is worth noting that 
choosing the best dimensionality reduction technique 
depends on the data and specific requirements. 

Inspired by the effectiveness of the DL model and data 
dimensionality reduction, a Long Short-Term Memory 
(LSTM) model with a series of data preprocessing 
techniques is proposed in this study to enhance positioning 
accuracy. In addition, to obtain the best hyperparameters 
for the LSTM model, Bayesian optimization is utilized for 
the tuning procedure. The contributions of this paper are 
as follows: 

 The proposed combination of dimensionality 
reduction techniques, i.e., TSVD and Linear 
Discriminant Analysis (LDA), helps to avoid the 
“curse of dimensionality” as well as to exploit the 
supervised learning information which 
consequently enhances the positioning accuracy. 

 Bayesian optimization is utilized for robust and 
efficient hyperparameter tuning of the LSTM 
model. 

 The proposed positioning scheme is compared to 
the state-of-the-art studies using the same public 
dataset showing considerable improvement in 
positioning accuracy. 

The paper is organized as follows. In Section II, the 
related works are presented. The data pre-processing 
procedure and hyperparameter tuning of the LSTM model 
are presented in Section III. The experimental results of the 
proposed approach and discussions are drawn in Section 
IV. The conclusions of the article are given in Section V.  

II. LITERATURE REVIEW 

Over the last decade, indoor positioning has 
increasingly attracted the attention of researchers and 
engineers. Among many approaches, deep learning models 
are of particular interest. It has to be noted that Wi-Fi RSSI 
signals have been the most popular choice for developing 
indoor positioning systems [5]. In a large positioning 
system, Wi-Fi RSSI data often experience high 
dimensionality and signal fluctuation. In addition, there 
might be some unintended APs present in the captured data 
due to the sharing network by people for their own 
purposes, e.g., mobile hotspots turning on/off, during 
measurement campaigns. Therefore, in developing a 
robust WF-IPS with a reasonable inference time, data pre-
processing techniques should be employed to remove 
noisy data and reduce feature dimension. 

Recently, various deep learning based approaches for 
WF-IPS have been developed as reported in [1–6]. Among 
them, Convolution Neural Network (CNN) and Recurrent 
Neural Network (RNN) were the most favorable models to 
be employed in many positioning approaches. In [14], two 
data pre-processing methods for large scale and small scale 
scenarios were proposed, then a CNN model with four 
convolutional layers was developed to enhance the 
positioning accuracy. In [15], a WF-IPS model for edge 
devices was developed by combining a light convolutional 
auto-encoder for feature extraction and a light CNN model 
for classification. In [16], deep learning models were 
developed based on RNN and LSTM for indoor 
positioning. The presented results show the similarity of 
floor classification and location estimates between RNN 
and LSTM models. In addition, the number of RNN or 
LSTM layers for the deep learning model was evaluated 
showing a slight improvement by utilizing more layers 
compared to using only one layer. In [17], to improve 
positioning estimation accuracy, an LSTM model was 
developed based on the results of a robust local feature 
extractor by using sliding windows. In [20], a combination 
of SAE and an attention-based LSTM model was proposed 
for WF-IPS. The Stacked Autoencoder (SAE) was 
employed for feature selection and the LSTM was utilized 
as the position predictor delivering robust location 
estimation. In [19], for improving localization robustness 
and accuracy, a spatial-temporal positioning solution was 
built upon a residual network and LSTM. The spatial 
features are extracted from the Wi-Fi signal of each time 
slice by the residual network while the temporal features 
are extracted by LSTM. 

In order to reduce the computation time of the 
positioning model, several approaches have been 
presented [18, 21–25]. In [21, 22], PCA was chosen as the 
data dimensionality reduction technique to pre-process the 
Wi-Fi RSSI before applying a classification/regression 
model for positioning estimation. The results 
demonstrated that utilizing PCA helps to improve the 
performance of WF-IPS both in positioning accuracy and 
system complexity. In [23, 24], authors have presented 
approaches in the same fashion as in [21, 22], however, 
using TSVD instead of PCA. The experiments illustrated 
that TSVD is more suitable for reducing the 

Journal of Communications, Vol. 19, No. 10, 2024

459



 

dimensionality of Wi-Fi RSSI data which often have 
sparsity characteristics. In [26], during the training phase, 
the localization area was divided into subareas by 
employing fuzzy C-means algorithm, only reliable APs in 
subareas were chosen to reduce the feature dimensions. In 
the positioning phase, the nearest neighbor technique was 
utilized based on the selected APs to determine the 
subareas, the location was then estimated by employing the 
relative distance fuzzy localization algorithm. In [18], an 
AP selection scheme was proposed to reduce the 
computational cost and noise impact while enhancing the 
positioning accuracy of the positioning model. In [25], 
data dimensionality reduction technique, i.e., selection of 
informative APs based on K-means and Fuzzy C-means 
clustering, was proposed for Multiple Service Set 
Identifiers signals.  

As discussed above, deep learning based WF-IPS seems 
to be the most promising approach for the enhancement of 
positioning accuracy. To further improve the performance 
of real-time positioning applications, data dimensionality 
reduction should be conducted before applying deep 
learning models to lower the inference time. 

III. MATERIALS AND METHODS 

This section presents the system model of the proposed 
WF-IPS. The data pre-processing procedure, i.e., data 
normalization, data dimensionality reduction, and 
Bayesian optimization for hyperparameter tuning of the 
LSTM regression model are discussed.  

A. Wi-Fi RSSI Dataset and Data Pre-processing 

1) Wi-Fi RSSI dataset 
The dataset provided by Mendoza-Silva et al. [27] was 

gathered on the 3rd and 5th levels of a library building in 
a university. The data collecting process required orienting 
oneself in specified directions and obtaining six 
fingerprints at each position. Six successive samples were 
taken at each position to eliminate any initial values. The 
datasets for training, Test-01, Test-02, and Test-03 
encompassed the directions of “Up” and “Down”, whereas 
Test-04 and Test-05 specifically targeted the directions of 
“Left” and “Right”. The collection proceeded in the 
following order: (1) “Up” direction 3rd floor, (2) “Down” 
direction 3rd floor, (3) “Up” direction 5th floor, and (4) 
“Down” direction 5th floor. The datasets for Training, 
Test-01, and Test-05 consistently encompassed data 
captured with all directions for the month positions 
corresponding to training. The data collected for Test-04 
originated from horizontal corridors, hence the data 
collecting directions are “Left” and “Right”. Test-02 and 
Test-03 were only focused on “Up” and “Down” directions 
corresponding to walking directions between bookshelves. 
The Wi-Fi RSSI data collection campaign is conducted in 
a total area of 308.4 square meters over both levels. The 
datasets were categorized into 15 collecting months, 
yielding a total of 16,704 training samples and 46,800 test 
samples. In the process of data preprocessing, any values 
corresponding to undiscovered Access Points (APs) are 
substituted with −100 dBm representing the weakest signal 
strength in the whole dataset which will be discussed in the 
subsequent sections of this research. 

2) Data normalization 
As discussed in the above sections, Wi-Fi RSSI 

observed data often experience variations over time as well 
as fluctuation because of fast fading in indoor 
environments. Therefore, the measured data should be 
scaled/normalized to reduce the noise while maintaining 
data information and structure before applying any 
dimensionality reduction technique. In this paper, several 
data normalized techniques, i.e., standard normalization 
and max-min normalization, as presented in Eq. (1) and Eq. 
(2), respectively, have been utilized to find the best method 
for delivering accurate position estimates. 

𝑅𝑆𝑆𝐼௝ௌ௧ௗே௢௥௠ ൌ
ோௌௌூೕିோௌௌூഋ

ோௌௌூ഑
                       (1) 

 

 𝑅𝑆𝑆𝐼௝ெ௔௫ெ௜௡ே௢௥௠ ൌ
ோௌௌூೕିோௌௌூ೘೔೙

ோௌௌூ௠௜௡೘ೌೣ
               (2) 

where, max min, , ,RSSI RSSI RSSI RSSI   are the average, 

standard deviation, maximum, and minimum Wi-Fi RSSI 
values, respectively, of each sample. 

, ,j jStdNorm jMixMinNormRSSI RSSI RSSI  are the measured, 

standard normalized and max-min normalized RSSI values, 
respectively, of the j -th AP. 

3) Data dimensionality reduction 
This subsection presents an approach for data 

dimensionality reduction by combining two well-known 
techniques namely TSVD and Linear Discriminant 
Analysis (LDA). This approach is proposed based on the 
principles of fingerprinting techniques which are 
supervised training methods. As reported in [23, 24], 
TSVD was applied successfully to reduce the data 
dimensions while improving positioning accuracy. 
However, TSVD is an unsupervised dimensionality 
reduction technique trying to preserve as much data 
information as possible. It does not provide any extra 
information to enhance the performance of the 
regression/classification model. Therefore, in this paper, 
we utilized LDA, a supervised dimension reduction 
technique, to obtain some extracted features that help the 
regression/classification model to have more informative 
features related to the training data labels. The results of 
TSVD and LDA are then concatenated to form the final 
dimensional reduction data. As a result, it is expected that 
the positioning accuracy should be improved. 

TSVD is a method devised to reduce the number of 
feature dimensions in a dataset. It is frequently employed 
to address diverse issues involving the presence of high-
dimensional data. The problem of high dimensional data 
referred to as the “curse of dimensionality” often 
negatively affects the performance of deep learning 
systems. TSVD is based on the notion of Singular Value 
Decomposition (SVD). The SVD tries to decompose a 
matrix 𝐴  into three distinct matrices 𝛴, 𝑈, 𝑉  which are, 
respectively, singular values, left singular vectors, and 
right singular vectors of the matrix 𝐴, as shown in Eq. (3). 

 
 𝐴ெൈே ൌ 𝑈ெൈெ𝛴ெൈேሺ𝑉ேൈேሻ் (3) 
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TSVD preserves the k  highest singular values and their 
corresponding singular vectors. The primary objective of 
TSVD is to find a reduced-dimensional representation of 
the original matrix that retains the maximum amount of 
data information, including data patterns and correlations. 
In order to efficiently decrease the dimensionality of data 
based on a particular problem, it is crucial to determine the 
optimal value of k . The mathematical representation of 
TSVD is given in Eq. (4). 

 

 𝐴ெൈே ൎ 𝐴௞ൈ௞ ൌ 𝑈௞ൈ௞𝛴௞ൈ௞ሺ𝑉௞ൈ௞ሻ் (4) 
 

The LDA is a very popular and successful feature 
extraction technique that utilizes the supervised 
membership of the data. The LDA tries to find an optimal 
linear projection where the between-class scatter is 
maximized while the within-class scatter is minimized. For 
the data with C classes, the between-class scatter matrix 
and the within-class scatter are computed as Eq. (5) and Eq. 
(6). 

 

 𝑆஻ ൌ ∑ 𝑁௖ሺ𝑚௖ െ 𝑚ሻ஼
௖ୀଵ ሺ𝑚௖ െ 𝑚ሻ் (5) 

 

 𝑆ௐ ൌ ∑ ∑ ሺ𝑥 െ 𝑚௖ሻሺ𝑥 െ 𝑚௖ሻ்
௫∈௑೎

஼
௖ୀଵ  (6) 

 

where, ,cN N are the number of samples in class c and 

total number of samples, respectively. 𝑚௖, 𝑚 are the mean 
of the data in class c and the global mean, respectively. 

cX is the set of data samples that belong to the class c .  

Let’s denote the number of TSVD components and 
LDA components is  and k d , respectively. The number 
of features of the data after conducting dimensionality 
reduction is ( )k d . 

B. System Model 

The proposed WF-IPS is separated into two phases 
including the offline phase and the online phase as 
illustrated in Fig. 1. In the offline phase, Wi-Fi RSSI data 
captured from the seen APs at RPs are pre-processed by 
cleaning, normalization, and dimensionality reduction 
techniques. The processed training data with the 
accompanying location labels are then utilized to train the 
LSTM regression model. Once the training procedure is 
completed, the LSTM regression model is ready to be used 
in the positioning phase. In the positioning phase, the real-
time captured Wi-Fi RSSI data by a mobile object is pre-
processed in the same fashion as described in the training 
phase before feeding to the trained LSTM regression 
model for estimating the object location. 

 
Training data 

collected at RPs

Normalization

Dimensionality Reduction

Normalization

Dimensionality Reduction

LSTM 
layer

Offline Phase

AP1

AP2

APN

Online Phase

Get Real-time 
Wi-Fi RSSI

Object Location

Dense 
layer

Output 
layer

LSTM 
model

AP1

AP2

APN

Reference Points

Dropout 
layer

Dropout 
layer

 
Fig. 1. Note how the caption is centered in the column. 

C. LSTM Model and Bayesian Optimization 

1) Introduction to LSTM model 
This article employs the LSTM regression model to 

estimate mobile object position. The LSTM model exhibits 
the ability to selectively retain or discard information when 
processing lengthy sequences of data. The LSTM is 
designed to effectively capture long-term relationships in 
order to describe context and sequential patterns. An 
LSTM cell consists of a memory cell and three gates: an 
input gate ti , a forget gate tf , and an output gate to , as 

depicted in Fig. 2. The input gate controls the flow of 
information that is sent to the cell. The forget gate 
determines the amount of information that should be 
preserved and conveyed to the cell. The output gate 
controls the output and the hidden state. The memory cell 
is tasked with retaining information over a period of time 
within the network. The operation at each time step t  of the 
LSTM can be mathematically expressed by Eq. (7) to Eq. 
(12). 

 
 𝑖௧ ൌ 𝜎ൣ൫𝑊௜,௫𝑥௧ ൅ 𝑊௜,ℎℎ௧ିଵ൯ ൅ 𝑏௜൧                (7) 

 
 𝑓௧ ൌ 𝜎ൣ൫𝑊௙,௫𝑥௧ ൅ 𝑊௙,ℎℎ௧ିଵ൯ ൅ 𝑏௙൧               (8) 

 
 𝐶ሚ௧ ൌ 𝑡𝑎𝑛ℎൣ൫𝑊௖,௫𝑥௧ ൅ 𝑊௖,ℎℎ௧ିଵ൯ ൅ 𝑏௖൧           (9) 

 
 𝐶௧ ൌ 𝑓௧𝐶௧ିଵ ൅ 𝑖௧𝐶ሚ௧ (10) 

 
 𝑜௧ ൌ 𝜎ൣ൫𝑊௢,௫𝑥௧ ൅ 𝑊௢,ℎℎ௧ିଵ൯ ൅ 𝑏௢൧            (11) 

 
 ℎ௧ ൌ 𝑜௧ 𝑡𝑎𝑛ℎሺ𝐶௧ሻ                       (12) 

 
where, the input, output, cell state, and updated cell state 
at the time step t are denoted as , , ,  and t t t tx h C C , 

correspondingly, whereas the previous cell state and 
hidden state are presented as 1 1,t tC h  . The weight matrices 

and bias vectors of the input, forget, updated cell state, and 
output gate layers are denoted as 
𝑊௜,  𝑊௙,  𝑊௖,  𝑊௢,  𝑏௜,  𝑏௙,  𝑏௖,  𝑏௢ , respectively. The 
activation functions used in the LSTM cells at each gate as 
illustrated in Fig. 2 are  and tanh . 

++

× 

  tanh 

tanh × 

Memory cell

Internal state
Ct-1 

Hidden state
ht-1 

Input gate 
xt

Ct

ht

Output gate 
ot

Input node
Forget 
gate
ft

Input 
gate
it tC

 
Fig. 2. The structure of an LSTM cell. 

2) Bayesian optimization 
The performance of the deep learning models highly 

depends on the setup of hyperparameters. Manually tuning 
hyperparameters, especially in the case of complex 
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networks, is a time-consuming task. Recently, several 
hyperparameter optimization methods have been 
introduced, e.g., grid search, randomized search, Bayesian 
Optimization (BO), etc. to relax the difficulty of manual 
tuning procedure. Grid search is an exhaustive searching 
technique which evaluates all the combinations of the 
hyperparameters. Therefore, it will come up with the best 
solution once the search process is complete. However, it 
is obviously the most time-consuming compared to other 
search algorithms. On the other hand, randomized search 
utilizes statistics of the hyperparameters during the 
searching process which could be more efficient compared 
to grid search in several situations. However, its 
effectiveness in finding optimal hyperparameters could 
degrade when the search space is large. It is worth noting 
that both grid search and randomized search do not 
consider the past results during the searching process. 

In contrast, BO is the hyperparameter tuning technique 
based on Bayes theorem [28]. It keeps track of the past 
results to build a probabilistic model of the loss function. 
The model is then utilized for determining the next 
combination of hyperparameters to be evaluated. This 
helps to reduce the time required for obtaining the optimal 
hyperparameters. The BO technique operates in as follows: 

 BO uses a surrogate (probability) model to 
approximate the loss function. A Gaussian process 
is often selected for the surrogate model which is 
utilized for determining the promising 
combination of hyperparameters to be examined in 
the true loss function. 

 An acquisition function is utilized by BO to 
employ the posterior information for determining 
the best set of hyperparameters in each iteration 
and identifying the most promising combination of 
hyperparameters to be evaluated in the next 
iteration. The exploration and exploitation of the 
searching process are balanced by the acquisition 
function. Exploration is the strategy to escape local 
optima by selecting a combination of 
hyperparameters in the less explored regions while 
exploitation is focused on the regions with a higher 
probability of improving the current solution. 

As discussed above, BO seems to be more effective than 
the other two mentioned searching techniques. Several 
studies have demonstrated the effectiveness of utilizing 
BO for determining the best hyperparameter set for deep 
learning models [29, 30]. Therefore, BO is chosen as the 
hyperparameter tuning for the LSTM model in this study. 

D. Positioning Performance Evaluation Metrics 

In order to assess the performance of the proposed 
positioning approach, Mean Distance Error (MDE) and 
Root Mean Squared Error (RMSE) are used as 
performance metrics to compare the positioning accuracy 
of different systems. Let’s denote the positioning distance 
error, the coordinates of the ground truth and the estimated 
location of the i-th RSSI test sample as𝑑௜,൫𝑥௜,௧௥௨௘, 𝑦௜,௧௥௨௘൯ 
and ൫𝑥௜,௣௥௘ௗ, 𝑦௜,௣௥௘ௗ൯ , respectively. The positioning 
distance error can be calculated by Eq. (13). Eq. (14) and 

Eq. (15) are then utilized to  compute the values of MDE 
and RMSE, respectively. 

 

𝑑௜ ൌ ට൫𝑥௜,௧௥௨௘ െ 𝑥௜.௣௥௘ௗ൯
ଶ

൅ ൫𝑦௜,௧௥௨௘ െ 𝑦௜.௣௥௘ௗ൯
ଶ
 (13) 

 

 𝑀𝐷𝐸 ൌ
∑ ௗ೔

ಿ೟೐ೞ೟
೔సభ

ே೟೐ೞ೟
 (14) 

 

 𝑅𝑀𝑆𝐸 ൌ ට
ଵ

ே೟೐ೞ೟
∑ 𝑑௜

ଶே೟೐ೞ೟
௜ୀଵ  (15) 

IV. RESULT AND DISCUSSION 

This section presents the experimental results conducted 
on a public dataset to demonstrate the effectiveness of the 
proposed WF-IPS. Since the objective of this study is to 
improve the positioning estimates, various setups have 
been produced to examine this target. The computational 
cost of the proposed approach is also briefly discussed. 

A. Data Dimensionality Reduction 

For data dimensionality reduction, the number of 
features to be kept should be considered carefully. If it is 
too small or too large, some essential information might be 
lost or some unnecessary information might still present in 
the data, respectively, leading to degradation of the 
performance of the classification/regression models. In the 
following, the procedure for determining the number of 
LDA and TSVD components is explained in detail. 

As mentioned in Subsection III.A.3, the LDA technique 
can extract features in a supervised manner which 
intuitively helps the classification/regression model 
perform better. Therefore, the LDA was first utilized and 
the maximum number of LDA components was chosen to 
be kept. In the training data, there are 24 different 
coordinates of RPs representing 24 data classes. As a result, 
the maximum number of LDA components that can be 
kept is 𝑑 ൌ 23. 

 

 
Fig. 3. The preserved information vs. number of STVD dimensions. 

 
Since we intended to preserve as much as possible the 

information of data when performing dimensionality 
reduction using TSVD, the cumulative explained variance 
ratio versus the number of TSVD components to be kept 
was plotted as illustrated in Fig. 3. It can be seen that when 
the number of TSVD dimensions is above 80, almost all 
information in the data is preserved. If 100 TSVD 
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dimensions are selected, it is clear from Fig. 3 that 
approximately 100% of data information is retained. 
Therefore, in this article, the number of TSVD dimensions 
is selected in the range of 80 to 100 with a step size of 10 
to evaluate the positioning accuracy. 

For determining the most suitable data normalization 
and the number of components being kept after 
dimensionality reduction, the baseline LSTM model as 
presented in [21] was utilized. In [21], the positioning 
model is in the same fashion as the proposal in this study. 
The differences are the dimensionality reduction technique 
and the hyperparameter tuning process. Table I illustrates 
the model structure with hyperparameters being used in 
[21]. 

TABLE I. BASELINE LSTM MODEL 

Characteristics Appearance 
Num. of LSTM units 100 

Input droprate for LSTM layer 0.3 
Act. Func. for LSTM layer sigmoid 
Num. of Dense layer units 100 
Act. Func. for Dense layer sigmoid 
Num. of Output layer units 2 
Act. Func. for Output layer linear 

Learning rate 0.001 
Optimizer Adam 
Batch size 32 

Training epoch 100 

 
The positioning accuracy of different normalization 

schemes and the number of components is presented in 
Table II. As can be seen from the Table, standard 
normalization is much better than max-min normalization 
for all different setups. Looking in more detail, for each 
type of normalization, combining TSVD with LDA for 
data dimensionality reduction helps the regression model 
perform better than using only TSVD. This demonstrates 
the importance of LDA in data dimensionality reduction. 
It has to be noted that, compared to the positioning results 
presented in [21], e.g., MDE = 2.18 m, without any 
modification of the LSTM regression model, using the 
proposed data dimensionality technique is able to produce 
a considerable improvement result. As indicated in Table 
II, the standard normalization is chosen in this study. 
Furthermore, for dimensionality reduction, 20 LDA 
components are concatenated with 80 TSVD components 
to form the data with 100 features which will be fed to the 
LSTM regression model for position estimation.  

TABLE II. EVALUATION OF DATA NORMALIZATION AND NUMBER OF 

COMPONENTS FOR DIMENSIONALITY REDUCTION 

Normalization 
Dimensionality Reduction 

MDE [m] 
LDA TSVD 

Standard 20 80 2.041 
Standard 10 90 2.043 
Standard 0 100 2.087 
Min-Max 20 80 2.159 
Min-Max 10 90 2.160 
Min-Max 0 100 2.231 

 

B. Hyperparameter Tuning of LSTM Model 

This paper aims to improve the positioning accuracy 
while maintaining the model complexity, i.e., maintaining 

the inference time of the system. Therefore, the main 
structure of the LSTM model is similar to the one proposed 
by [21]. However, with the help of the BO, this article 
examines the larger set of hyperparameters in order to 
come up with the most promising model for obtaining high 
positioning accuracy. Especially, we added two dropout 
layers after the LSTM layer and the dense layer which 
might help the model to have better generalization 
resulting in better positioning accuracy for the unseen test 
data.  

As presented in Table III, the column “BO results” is 
the final optimal set of hyperparameters for the proposed 
LSTM regression model. It can be seen that the number of 
units for the LSTM layer and dense layer is the same as the 
model proposed by [21]. However, other hyperparameters 
such as drop rates and activation functions are different 
from the parameters provided by [21]. 

It has to be noted that the optimal hyperparameters have 
been obtained with ease because of the utilization of BO. 
During the BO based searching process, we have 
implemented a strategy for early stopping if the 
performance of the LSTM regression model is not 
improved in 20 consecutive epochs. This also helps to 
shorten the searching time of the BO. For this study, BO 
needs only a few hours to deliver the optimal set of 
hyperparameters. 

To further tune the hyperparameters of the proposed 
LSTM model, the number of training epochs was varied in 
the range of 20 to 100 while keeping all other determined 
hyperparameters. The best results were obtained when the 
number of training epochs was 30. 

TABLE III. HYPERPARAMETER TUNING FOR THE LSTM MODEL 

Characteristics Appearance BO results 

Num. of LSTM units [40:10:100] 100 
Input drop rate for LSTM layer [0.0:0.1:0.3] 0.0 

Act. Func. for LSTM layer [relu, tanh, sigmoid] tanh 
Drop rate for Dropout layer [0.0:0.1:0.5] 0.4 
Num. of Dense layer units [40:10:100] 100 

    Act. Func. for Dense layer [relu, tanh, sigmoid] tanh 
Droprate for Dropout layer [0.0:0.1:0.5] 0.0 
Num. of Output layer units 2 2 
Act. Func. for Output layer linear linear 

Learning rate [0.01, 0.001, 0.0001] 0.001 
Optimizer [Adam, Nadam] Adam 

Training epoch 100 100 

 

C. Positioning Performance Evaluation 

To demonstrate the superior performance of the 
proposed approach, for a fair comparison, three previous 
studies have been reproduced in this work on the same 
public data set provided by [27]. Fig. 4 presents the 
experimental results of the proposed method and three 
other solutions. The results demonstrate a considerable 
improvement in positioning accuracy of the proposed 
model compared to the others. As illustrated in the figure, 
with the aid of two unsupervised dimensionality reduction 
techniques, i.e., PCA [21] and TSVD [24], and the fine-
tuning LSTM model, the positioning accuracy was 
considerably improved. The results also revealed that 
TSVD performed better than PCA in the case of Wi-Fi data 
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where sparsity is present in the data. Furthermore, with the 
help of supervised dimensionality reduction, i.e., LDA, the 
positioning accuracy was further improved as expected. 
The MDE and RMSE obtained by our model are 1.99 m 
and 1.69 m, respectively, which are the lowest values 

among all presented methods. For instance, the MDE of 
the proposed approach improved by roughly 3%, 9%, and 
24% compared to the results obtained by [16, 21, 24], 
respectively. Table IV shows the differences between our 
study and other benchmark works. 

TABLE IV. COMPARISON BETWEEN DIFFERENT APPROACHES 

Models 
Hyperparameter 
Tuning Method 

Dimensionality 
Reduction Techniques 

Advantages Drawbacks 

LSTM [16] Manual No Simple 
Slow and possibly not optimal 
hyperparameter determination 
Curse of dimensionality experience 

PCA-LSTM [21] Manual PCA Curse of dimensionality avoidance 
Slow and possibly not optimal 
hyperparameter determination 
Low computational cost 

TSVD-LSTM [24] Manual TSVD Curse of dimensionality avoidance 
Slow and possibly not optimal 
hyperparameter determination 
Low computational cost 

LDA-TSVD-LSTM 
(Proposed) 

BO based LDA-TSVD 

Fast and robust hyperparameter 
determination 
Curse of dimensionality avoidance 
Better positioning accuracy based 
on utilization of supervised 
dimensionality reduction 

Slightly higher computational cost 
compared to [21] and [24] 

 
Fig. 4. Comparison of positioning accuracy. 

 
Fig. 5. CDF of positioning error distance. 

For a better understanding of the positioning accuracy 
of the proposed approach compared to the other 
benchmark solutions, Fig. 5 shows the Cumulative 
Distribution Function (CDF) of the positioning error 
distance. The solid blue line, dashed dot blue line, dashed 
blue line, and dotted red line represent the CDF of the 
proposed model, [16, 21, 24], respectively. It is clear that 
data dimensionality reduction based LSTM regression 
models perform better than the model using data with the 

original number of features. Among the approaches 
utilizing data dimensionality reduction, our proposed 
model delivers better positioning results in the whole range 
of the CDF. As illustrated in Fig. 5, 90% of the estimated 
positions have a distance error of less than 4 m which is 
suitable for civil LBS applications. It should be noted that 
the majority of the test data provided by [27] were 
collected at locations different from the RPs. 

In terms of computational cost, since the proposed 
LSTM regression model has the same structure as the 
model presented in [21], the inference time of the two 
LSTM models are the same. However, there are two 
dimensionality reduction techniques applied to the online 
testing data in this work, therefore, the inference time of 
the whole system of the proposed model is slightly higher 
than that of the system presented in [21].  

V. CONCLUSION 

This paper presents an approach for WF-IPS to enhance 
positioning accuracy while maintaining the system 
complexity at a low cost. The model is built upon the 
combination of two well-known dimensionality reduction 
techniques, namely LDA and TSVD, to employ the 
advantages of each technique. In addition, to ease the 
procedure of hyperparameter tuning of the LSTM 
regression model, the BO is chosen because of its robust 
performance with exploitation and exploration abilities. 
The experimental results of different approaches 
conducted on the same public dataset demonstrate the 
effectiveness of the proposed solution. 

It is noted that the dataset used in the study is 
remarkably similar to the real situations where the number 
of RPs is limited while the test locations can be anywhere 
in the area of interest. In the future, effective data 
augmentation and interpolation techniques for enriching 
the training data should be investigated to further improve 
the performance of WF-IPS. 
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