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Abstract—This paper introduces an advanced beamformer 
that utilizes Constraint Handling Techniques (CHTs) and 
metaheuristic algorithms for pattern nulling in a Uniformly 
Spaced Linear Array (ULA), effectively positioning imposed 
nulls in the directions of interference. We explore four 
scenarios of ULA patterns with preset nulls, employing the 
Adaptive Penalty Technique (APT) and comparing the 
results with the Original Feasibility Rules Technique (OFRT) 
to validate our approach. The proposed beamformer, 
utilizing CHTs, demonstrates remarkable capabilities in 
suppressing side beams, maintaining a predetermined beam 
width, and accurately placing single, multiple, and broad 
nulls at arbitrary interference directions. Additionally, our 
findings indicate that the beamformer using APT is more 
efficient than the one using OFRT, particularly in terms of 
convergence speed during sample synthesis. This study 
underscores how integrating CHTs with metaheuristic 
algorithms enhances the optimization of beamforming in 
advanced antenna systems, thereby improving signal 
processing and communication system performance in 
various real-world applications.  

Keywords—constraint handling techniques, uniformly 
spaced linear array, null-steering, adaptive penalty technique, 
original feasibility rules technique 

I. INTRODUCTION

In the realm of signal processing and 
telecommunications, advanced antenna systems, 
particularly beamforming techniques, play a pivotal role in 
enhancing the performance of wireless communication 
networks. Beamforming has garnered significant attention 
in Uniform Linear Array (ULA) systems due to its ability 
to precisely direct transmitted or received signals, thereby 
amplifying their strength, minimizing interference, and 
boosting overall system capacity. ULAs are widely 
utilized in beamforming due to their simplicity and 
effective performance [1]. The essence of beamforming 
lies in manipulating signals from individual antenna 
elements based on predefined principles, aiming to sculpt 
and guide the array's beam to achieve objectives such as 
steering the main beam in a desired direction, adjusting 
sidelobe levels, and creating null regions. This technique 

enables the antenna array to form and control its beams to 
meet specific communication system requirements [2]. 

Optimizing beamforming in ULA systems, however, 
entails addressing complex constraint optimization 
problems that must consider practical factors such as 
hardware limitations, regulatory requirements, and 
specific system specifications. One critical challenge in 
this optimization process is effectively managing the 
multitude of constraints imposed by these considerations. 
Constraint Handling Techniques (CHTs) emerge as 
powerful tools within the framework of metaheuristic 
optimization algorithms, facilitating efficient navigation of 
complex solution spaces while ensuring compliance with 
all relevant constraints. By incorporating specialized 
mechanisms for constraint handling, CHTs empower 
metaheuristics to address and overcome the intricate 
challenges inherent in optimizing beamforming for 
advanced antenna systems [3]. 

Metaheuristic algorithms, including the Grey Wolf 
Optimizer (GWO), Genetic Algorithms, Multi-Verse 
Optimizer, and Artificial Bee Colony, offer powerful 
optimization tools for beamforming in antenna arrays [4]. 
However, integrating these metaheuristics with 
beamforming presents challenges, particularly in handling 
constraints inherent in practical beamforming problems. 
These constraints may include steering angle constraints, 
power constraints, element spacing constraints, and mutual 
coupling constraints, among others. CHTs play a crucial 
role in optimization algorithms, particularly when dealing 
with constrained optimization problems. Here are some 
general characteristics and strengths of these techniques: 

 Flexibility in handling constraints: Metaheuristic
algorithms can handle both equality and inequality
constraints more flexibly compared to convex
approximation methods. These algorithms can
integrate various CHTs, such as penalty methods,
constraint dominance, repair mechanisms, or constraint
satisfaction, directly into the optimization process [5].

 Adaptability to problem structure: Metaheuristic
algorithms can be easily adapted to problem-specific
structures and characteristics. They can leverage
knowledge about the problem to develop custom
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operators, problem-specific search strategies, and 
combinations with other optimization methods that are 
more effective for hard, non-convex problems [6, 7].  

 Handling multi-objective optimization: Metaheuristic 
optimization algorithms naturally lend themselves to 
solving multi-objective optimization problems (MOPs) 
by maintaining a diverse set of solutions (Pareto fronts) 
representing trade-offs between conflicting objectives. 
Techniques such as dominance, diversity preservation, 
and elitism are commonly employed to effectively 
tackle MOPs [8]. 

 Robustness to problem complexity: Metaheuristic 
algorithms demonstrate robust performance across a 
wide range of problem complexities and dimensions. 
They do not rely on assumptions of convexity or 
smoothness, making them suitable for highly non-
linear, non-convex, and discontinuous objective 
functions [9]. 

In summary, while convex approximation methods like 
geometric programming or successive convex 
approximation have their advantages in certain scenarios, 
CHTs using metaheuristic optimization provide a more 
versatile and robust approach for solving non-convex 
problems, multi-objective optimization problems, and 
constrained problems [10]. 

Integration with metaheuristics: CHTs are often 
seamlessly integrated with metaheuristic optimization 
algorithms. This integration enhances the ability of 
metaheuristics to explore and exploit the solution space 
while respecting constraints. CHTs using metaheuristic 
optimization offer several advantages compared to convex 
approximation methods such as geometric programming 
or sequential successive convex approximation when 
solving non-convex problems, multi-objective 
optimization problems, and constrained problems [6]. 
CHTs help optimization algorithms uncover high-quality, 
workable solutions in a variety of application domains by 
utilizing these traits and strengths to efficiently manage 
limited optimization issues. 

Many researchers have created, improved, and 
evaluated numerous CHTs implemented in specific 
metaheuristic optimization algorithms (MOAs) for 
optimization problems. Researchers have applied CHTs 
across various fields, especially focusing on MOAs, such 
as studying the evaluation and performance analysis of 
CHTs using advanced algorithms in 2002 [11]. By 2011, 
researchers had thoroughly examined and extensively 
incorporated CHTs into nature-inspired algorithms, such 
as EA or those derived from swarm intelligence [12]. 
These methods include feasibility rules, electronic 
constraint techniques, stochastic ranking, penalty methods, 
multi-objective concepts, special operators, and composite 
CHTs. In 2015, research and evaluation focused on 
penalty-based CHTs, combining particle swarm 
optimization with other optimization methods [13]. 
Electronic constraint techniques, penalty functions, 
feasibility rules, and stochastic ranking CHTs were all 
scrutinized in depth in a 2018 review [14] of the 

Differential Evolution algorithm, with a focus on 
benchmark dynamic conic optimization problems. 

To address continuous optimization problems, the 
GWO metaheuristic method was employed. The GWO 
algorithm draws inspiration from the social structure and 
hunting tactics observed in gray wolves. The algorithm 
mimics the hierarchical leadership structure and 
cooperative hunting tactics of a wolf pack to solve 
optimization problems. It offers advantages such as 
simplicity, fast convergence, and effectiveness in handling 
both continuous and discrete optimization problems [15]. 

This paper presents a beamformer proposal based on 
CHTs to construct a suitable objective function combined 
with metaheuristic optimization. Although some authors 
have applied a number of separate CHTs in the synthesis 
of radiation diagrams, such as [16], [17], and [18] in this 
paper, CHT has been highlighted in the synthesis of 
diagrams for radiation. This paper elucidates the role of 
CHTs, specifically assessing two CHTs, APT and OFRT, 
in the development of an appropriate objective function 
combined with metaheuristic optimization. For the 
adaptive control null ULA antenna model, four scenarios 
will be examined to assess CHTs using beamforming 
techniques that rely on complex manipulation of the 
excitation signal’s weighting for each element in the 
antenna array, often employing metaheuristic algorithms. 
After presenting and analyzing the problem, four 
simulation scenarios are provided. These include 
examining the convergence characteristic and putting 
single, multiple, and wide nulls on the radiation pattern in 
the ideal case, all of which will be implemented through 
the null setting technique by modifying complex weights 
based on the GWO algorithm, the APT, and the OFRT. 

II. PROBLEM FORMULATION 

This paper examines HDULA, which features a 
radiation pattern depicted in Fig. 1 and a linear array with 
uniform spacing, containing M elements arranged along 
the y axis, also shown in Fig. 1. In this paper, the azimuth 

angle 𝜙 will consistently be assumed to be 90°. 
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Fig. 1. The array of dipole antennas comprises M elements. 

 

The array’s radiation pattern at the corner   can be 

represented as follows: 
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where: 

 ( )EF   : represents the element factor of a half-

wavelength dipole antenna; AF represents the array 
factor in the direction  . 

 sin( );kd 
2

:k



 the numbers representing the 

waves; :
2

d


  the spacing between adjacent elements; 

and :  the wavelength. 

 w :mj
m ma e   the complex weight activated at the m -

th array element; ma  and :m  the amplitude and the 

phase of the current at the m array element. 

 𝑀: The total number of antenna elements in the array. 

The array pattern for ULA can be represented as a vector 
as follows: 

     P EF   s w
 (2)

where: 

 s : Steering vectors 

     0 1, ,y N yj n j n
e e

      
s

 (3)

 w : Complex weight vectors 

 1, ,
T

Nw ww 
 

(4)

To achieve the desired array pattern with K  nulls in the 
directions ( )k , the problem with respect to w can be 

expressed as: 

 
 

0

thr

max  

s.t. 1, ,k

P

P P k K



   
w

  (5)

where: thrP is threshold for the desired null-depth level.  

During the transmission of electromagnetic energy in an 
antenna array, the radiation characteristics, including 
impedance and radiation pattern, of the antenna elements, 
are affected by the presence of other elements within the 
array. This phenomenon is known as Mutual Coupling 
(MC). Mutual coupling plays a crucial role in adaptive 
arrays as it directly impacts the efficiency and performance 
of the array, such as the direction of the main lobe, 
SideLobe Level (SLL), and Null Depth Level (NDL). 
Therefore, to characterize mutual coupling, Mutual 
Impedance, Coupling Matrix, S-Parameter, or Embedded 
Element Patterns have been widely used [19]. The paper 
will utilize mutual impedance to account for the effects of 
mutual coupling in a half-wavelength dipole antenna array. 

For mutual impedance, if the source voltages 

 1 2

T

MV V VV   are known, the input currents 

(excitation weights)  1 2

T

MI I II   can be 

calculated using the following equation: 

ZI V  (6) 

where Z is the mutual impedance matrix, which can be 
calculated using the induced electromotive force method 
as presented in [19]. 
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 (7) 

where mnZ  is the mutual impedance between elements m 

and n in the array, and is defined as follows [19]: 
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where: 0 2 ;u d  2
1 2 0,25 ;u d   

2
2 2 0,25 ;u d    d is the distance between the 

antenna elements; iC and iS  is calculated as follows: 
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 (9) 

It can be observed from equations (6), (7), and (8) that 
the mutual impedance matrix Z  is not a diagonal matrix 
because 0mn Z for m n . Consequently, the effective 

input currents I  do not fully follow the voltage laws V , 
which introduces distortions in the radiation pattern of the 
array, including the null depth level.  

III. CONSTRAINT HANDLING TECHNIQUES 

Optimization problems permeate every facet of applied 
sciences and engineering disciplines. The majority of 
practical applications require the restriction of physical 
variables, incorporating both equality and inequality 
constraints. Numerous methods exist for managing 
constraints [11], but two frequently employed strategies 
are penalty functions and the decoupling of the objective 
function from the constraints. In mathematical terms, the 
problem of constrained optimization can be expressed as 
described by [20]: 

Minimize ( )f x    

subject to  

 
 

0, 1,2,..., ,

0, 1,2,..., ,

, 1,2,..., ,

j

k

l u
i i i

g x j j

h x k K

x x x i n

 

 

  

 (10)

where:   

 ( )f x : The objective function concerning the 

vector variable x . 

 ( )jg x : The inequality constraints. 
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 ( )kh x : The equality constraints. 

 l
ix , u

ix represents the lower and upper limit values, 

respectively, of component ix in .x  

To solve this optimization problem, the article applied 
the APT and the OFRT [3]. Then, the constrained 
optimization problem (10) is transformed into an 
unconstrained optimization problem [21].  

A. Adaptive Penalty Techniques (APT) 

The APT transforms the constrained problem into an 
unconstrained one by incorporating a penalty term into the 
fitness function. This penalty term depends on the degree 
of constraint violations and the penalty factors, which may 
vary during the optimization process. The following 
general format can be used to formulate the modified 
objective function [3]: 

1 1
( ) ( ) . ( ) . ( )

J K

j j k kj k
F x f x r g x c h x

 
       

(11)

With ( )F x represents the penalized objective function, 

also referred to as the fitness function, jr and kc are 

positive weighting coefficients referred to as penalty 
factors.  

By transforming the equality constraints into inequality 
constraints, particularly beamforming techniques, 
equation (11) can be revised as [3]: 

1
( ) ( ) . ( )

m

j jj
F x f x r g x


   (12)

In 2019, Kawachi et al. [22] introduced an adaptive 
method to determine the penalty factor ( )PF  dynamically 

throughout the evolutionary process, aiming to address 
concerns related to excessive or insufficient penalization 
that could cause the search process to stray from the 
optimal solution. Specifically, they formulated an 
objective function: 

( ) ( ) . ( )F x f x PF v x 
 (13)

where ( )v x represents the mean constraint violation, and

PF denotes the penalty factor, and then three steps are 

carried out: 

 Step 1: By comparing the following two individuals, 
the candidates for punishment factors PFCs  are 

identified: 

,

( ) ( )

( ) ( )
k l

k l
k l

f x f x
PFC

v x v x


 

  (14)

where, k and l indicate two different individuals; PFCs is 

determined for all feasible combinations within a given 
population. 

 Step 2: The penalty factor is established as follows: if 
the proportion of negative PFCs  surpasses 50%, the

PF retains its previous generation's value; 

alternatively, PF is computed as the average of the 

positive .PFCs  

 Step 3: PF is revised. If the ratio of feasible 

individuals rf  in the population surpasses feasp , then 

the penalty factor for the next generation is determined 
as follows [3]: 

1 .G rate GPF p PF 
 (15)

where [0,1]ratep   and the parameters are defined by the 

user, feasp . 

B. Original Feasibility Rules Technique (OFRT) 

In the APT, it is necessary to experiment with various 
penalty factor values to determine the optimal choice, as 
incorrect values may lead to the divergence of the search 
process from the vicinity of the optimal solution. Deb 
(2000) introduced a new technique aimed at overcoming 
this limitation, which centers on a tournament selection 
operator to compare two solutions. The following rules are 
used [3]: 

(i) for viable solution and non-viable solution, the 
feasible one is selected. 

(ii) for two viable solutions, the one with the superior 
objective function value is chosen. 

(iii) for between two non-viable solutions, the one with 
the lower violation parameter value is chosen. 

In accordance with the initial feasibility rules technique, 
the fitness function is defined as follows: 

max 1

( ) ( ) 0 1,2,...,

max 0, ( )
( ) j

m
jj

f x if g x j m

f g x otherwise
F x

  
 
  

  



 
   (16)

where the value of the objective function for the least 
advantageous viable option among the current population 
is denoted by max.f  If a population has no workable 

solutions, maxf  is set to zero. 

Using this method, each instance of a constraint 
violation is added together and evaluated as a single 
number. As a result, in the case of infeasible solutions, 
their evaluation is limited to the degree of constraint 
violation. 

IV. PROPOSAL OF THE BEAMFORMER 

Considering the objectives and criteria for interference 
suppression, the proposed beamformer needs to effectively 
mitigate interference while maintaining the main beam's 
direction and width and ensuring that the sidelobes remain 
within specified levels. The proposed beamformer is based 
on CHT, GWO, and complex weight control.  

The formulation of the optimal complex weight vector 
for the described in Eq. (4), employing the CHTs and 
GWO-based approach, is as follows: 

o ref w w Δ
 

(17)

where: 
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 ref :w represents the reference weight vector, which is 

generated using methods such as the Chebyshev 
technique. 

 ow : optimal weight vector 

 Δ : the disturbance of the weight vector 

 The optimized pattern, with enforced nulls, preserved 
main lobes and suppressed sidelobes, is depicted as: 

          o refoP EF EF      s w s w Δ
 (18)

         refoP EF EF      s w s Δ
 (19)

         o refP EF AF EF       s Δ
 (20)

To impose K  nulls in the direction of interferences for 
1, , ,k K   where NDL is to be less than or equal to dBS  

from the peak of the main lobe, then the resulting equations 
are formulated as: 

ref Thr SΔ v
 (21)

where: 

 10 0 0dB 20log ,

2010
refS P

Thr

  
 
 

 


 

(22)

   
   

   

1 11

2 21
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s s
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 (23)

 T1, , M  Δ 
 

(24)

    T

ref ref ref1
, , KAF AF    v   (25)

 

Therefore, the optimization problem can be expressed 
as: 

 
2

ref

min  

s.t. max 0Thr  
Δ

Δ

SΔ v  (26)

This problem can be solved by CHT and GWO to 
acquire the optimal weight for the desired pattern. 

For this paper: 

 
2

ref

( )

( ) max

f x

v x Thr



  

Δ

SΔ v  
(27)

 

In line with the objective of suppressing interference, 
the beamformer is engineered to possess interference 
suppression capabilities while preserving the direction and 
width of the main beam and controlling the sub-beam 
within predefined thresholds. Consequently, the challenge 
at hand manifests as a constrained optimization problem. 
Drawing from this assessment, the problem can be 
reformulated as an unconstrained optimization problem by 
employing two constraint processing techniques, namely 

APT and OFRT, with the fitness function outlined as 
follows: 

 
Start

Set paragraph for antenna array, interference direction, stopping condition;
Define P_feas=0.5; P_rate=0.95; PF=1e2;

Define the ftness funtion F with objective function f and violation v;
Initializing GPO population: Alpha, Beta, Delta;

Finding current best soluotion base on F.

Update Alpha, Beta, Delta

Calculate objective function for each search agen by CHT

Update the position of search agent including omega.
Finding the current best solution (Alpha position)

The stop condition is satisfied:

Contruct the optimal weight vector from the best solution and perform 
NULL placement radiation pattern

End

Y

N

Fig. 3. Flowchart of the solution based on the GWO and CHTs. 
 

The fitness function of the problem is rewritten by 
applying APT as follows: 

2

ref2

if 0

max if 0

v

PF Thr v
F  

  
 

 

    


 


SΔ v  
(28)

The fitness function of the problem is rewritten by 
applying OFRT as follows: 

2

max ref

0

max 0

v

f Thr v
F  

  
 

 

   


 


SΔ v  
(29)

In which: maxf  is the largest value among the f target 

values found. 
 

Initializations: 

 The initial setup involves defining input data such as 
the number of array elements ,N _Max I or the desired 

value of the fitness function, threshold, the Direction of 
Arrival (DOA) of interferences, the stopping condition 
(either the maximum number of iterations), and the 
radiation pattern of the array element. 

 Define the objective function ( )f x  and constraint 

function ( )v x  from Eq. (27), in which the array factor 

is selected according to a specific pattern nulling 
technique as described in Eq. (1). 

 Mapping solutions (sets of weights) to locations ( )x  of 

wolves in the population during the optimization 
process. 
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Start

Calculate f, v, rf;

 rf <= P_feas

 

The percentage of positive 
PFCs exceeds 50% ?

PF is computed as the mean of the 
positive PFC values

 Fitness = f + PF * v

PF = P_rate * PF

Y

N

N

Y

i  = 1

i < pop

i+1

End

N

Y

( ) ( )

( ) ( )
k l

k l

f x f x
PFC

v x v x


 



 
Fig. 4. Flowchart of the solution based on the APT. 

 

Start

Calculate f, v, f_max; 

v <= 0

Fitness = f_max + v Fitness = f

End

N

Y

i=1

i < pop

i+1

 
Fig. 5. Flowchart of the solution based on the OFRT. 

Calculate fitness function by CHTs 

The approach used to compute the fitness function using 
the ADP is detailed in the algorithm flowchart shown in 
Fig. 4, as is the technique employed to compute the fitness 
function using the OFRT, which is explained in detail in 
the algorithm flowchart presented in Fig. 5. 

Finding the best solution by GWO: 

The beamformer iteratively computes and explores the 
current optimal solution using the GWO method outlined 

in [15]. The process persists until the termination criterion 
is satisfied. Subsequently, the final optimal solution is 
acquired. 

Construction of array element weights: 

The beamformer establishes the corresponding weights 
for every ULA element based on the ultimate optimal 
solution. Pattern nulling will be carried out using these 
weights. 

V. NUMERICAL RESULT 

The paper will consider five scenarios to evaluate CHTs 
based on the beamformer's ability to suppress interference. 
This involves processing the complex weights of the 
excitation signal for each individual element in the antenna 
array using a metaheuristic algorithm. The proposed 
method will be applied and evaluated on both the receiver 
and transmitter sides. 

All scenario simulations will adhere to specified 
parameters, including the use of a 20-element half-
wavelength dipole array, a GWO algorithm with a 
population size of 100, 200 Monte Carlo simulations, and 
a maximum of 200 iterations. The reference pattern will be 
generated using weights derived from the Chebyshev 
method with a sidelobe level (SLL) of െ30 dB. Findings 
for all scenarios will be averaged from 50  simulations 
conducted in MATLAB 2023b, running on an Intel (R) 
Core (TM) i5-8265U CPU @ 1.60GHz. 

In uniformly spaced arrays, the Chebyshev array's 
distinct weight distribution results in an optimal radiation 
pattern that effectively balances sidelobe levels and 
provides an ideal beamwidth, particularly at the first null 
point of the main beam [23]. Therefore, the Chebyshev 
array factor has been selected as the preferred pattern for 
this paper to manage the SLL and the main beam's 
beamwidth. In (1), the step size is fixed to 1 .o   

Figs. 3–5 illustrate the flowcharts representing these 
solutions. Scenario 1, titled “Convergence Rate,” was 
employed to assess the time taken for the objective 
function to converge using the APT and OFRT. 
Subsequently, Scenarios 2-5 were utilized to evaluate the 
ability of the waveform generator to steer nulls, employing 
either the APT or the OFRT. The simulation outcomes for 
all scenarios are illustrated in Figs. 6–18. 

A. Convergence Rate 

This scenario compares the convergence performance 
of a beamformer using a GWO-based APT with the 
convergence speed of an adaptive beamformer using a 
GWO-based OFRT in the case of placing a null ( 20 ),o 

multiple nulls ( 20 ,20 ,40 )o o o   and wide nulls 

( 20 40 )o o   at the top of the side beams of the 

Chebyshev radiation pattern. The objective function value 
and violation value changing through each iteration are 
illustrated in Figs. 6–8 for the three cases of a single null, 
multiple nulls, and a broad null. It can be seen that the case 
of beamforming using the APT reaches the convergence 
point faster than the adaptive beamforming case using the 
OFRT. However, a larger population size results in 
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increased computation time. Therefore, a population size 
of 100 and 200 iterations will be selected to simulate the 
scenarios. With the ability to achieve such fast 
convergence, the APT can be a potential technique for 
real-time applications of radio communication systems. 
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Fig. 6. The objective function and violation versus the number of 

iterations for the cases of a single null with 20   . 
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Fig. 7. The fitness function and violation versus the number of iterations 

for the cases of multiple nulls with 20 ,20 ,40o o    . 
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Fig. 8. The objective function and violation versus the number of 

iterations for the cases of a broad null with 20 40o   . 
 

In scenario 2, we will compare and evaluate the 
possibility of placing a null on the radiation pattern of APT 
and OFRT. The null can be positioned in any direction. In 
this instance, it is selected to align with the top of the third 
sidelobe (20°). We initialize the individuals with 
Chebyshev array weights, ensuring a SLL of െ30 dB. 

B. Ability to Eliminate Interferences 

Fig. 9 depicts the optimized radiation patterns featuring 
a single null value achieved through the APT and the 
OFRT. It is evident that the optimal radiation patterns by 
both APT and OFRT have preserved most of the 
characteristics of the Chebyshev radiation pattern, such as 
the main beam direction, FNBW ( 18 ),FNBW    HPBW

( 6 ),HPBW   and SLL ( 30dB)SLL   except that the 

NDL at 20° is 49.595dB  and 49.978dB for the APT 

and OFRT, respectively. Fig. 10 further elucidates this 
result, demonstrating the close proximity between the 
cumulative distribution function (CDF) curves of the SLLs 
in the radiation diagram using the APT, the OFRT, and 
Chebyshev’s pattern. These results clearly demonstrate the 
significant interference suppression effect achieved by 
precisely placing a null point in the noise direction using 
CHTs. 
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Fig. 9. Optimized pattern with a single null at 20°. 

 

0.0

0.2

0.4

0.6

0.8

1.0

-90 -80 -70 -60 -50 -40 -30 -20

SLL [dB]

C
D

F

 OFRT
 APT
 Reference

 
Fig. 10. CDFs of SLLs for the cases of a single null with 20   . 
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Fig. 11. Optimized pattern with three nulls at -20°, 20°, and 40°. 

 

Scenario 3 refines the radiation pattern by combining 
multiple individual nulls situated at angles of –20°, 20°, 
and 40°. The optimized radiation patterns with multiple 
nulls, shown in Fig. 11 were created using the APT and 
OFRT. These methods effectively maintain nearly all the 
attributes of the original Chebyshev pattern, except that the 
sidelobe at –40° exhibits an SLL of approximately -35 dB. 
The null depth levels at –20°, 20°, and 40° are as follows: 
െ49.691  dB, െ49.682  dB, and െ49.653  dB with the 
APT, and െ50.508  dB, െ50.433  dB, and െ50.327  dB 
with the OFRT, respectively. This is evident in Fig. 11, 
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which demonstrates that all NDL values are deep at the 
െ50 dB threshold and all SLL values closely follow the 
െ30 dB threshold, while maintaining the HPBW close to 
the Chebyshev pattern. These results are shown more 
clearly in Fig. 12, where the two CDF lines of the SLLs of 
the radiation diagram using the APT and the radiation 
diagram using the OFRT closely follow the CDF line of 
the SLL of the Chebyshev radiation diagram. This scenario 
further illustrates the noise suppression and interference 
mitigation capabilities of CHTs. 
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Fig. 12. CDFs of SLLs for the cases of multiple nulls with 

20 ,20 ,40o o    . 
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Fig. 13. The optimized pattern exhibits a broad null spanning from 20° 

to 40°. 
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Fig. 14. CDFs of SLLs for the cases of a broad null with 20 40o   . 

 

To demonstrate the capacity for broad interference 
suppression, Scenario 4 involves generating a pattern with 
a broad null imposed to cover the target sector of [20°, 40°]. 
This pattern is depicted in Fig. 13. The main beam width 
remains virtually unchanged, and the maximum SLL is 
approximately –30 dB. The results demonstrate that the 
ability to synthesize radiation patterns using APT and 

OFRT is still superior. The results are illustrated more 
clearly in Fig. 14. 
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Fig. 15. PF value through each iteration with a single null, three nulls, 

and a broad null. 
 

The graph in Fig. 15 depicts the change in the value of 
the PF corresponding to each iteration of the APT. In the 
graph, there are three lines representing the change of PF 
through each loop, corresponding to three cases: a single 
null, multiple nulls, and a wide null. The graph clearly 
shows that the PF value gradually decreases with each 
iteration, reaching a plateau. However, there are a few 
spikes in some iterations, but the PF then returns to 
stability and continues to decrease. This illustration shows 
that changes in the PF value reflect the refinement of the 
constraint handling technique, particularly the APT, which 
is adjusted to suit each stage of the optimization problem. 
Thus, the graph depicting the change in PF provides 
insight into the effectiveness of the APT in solving 
optimization problems. 

C. Patterns with Mutual Coupling 

Scenario 5 investigates the impact of mutual coupling 
on the optimal radiation pattern obtained using the APT-
GWO method. The mutual coupling effect is quantified 
through the mutual impedance matrix discussed in Section 
II. This impact is analyzed for scenarios involving the 
placement of a single null at 20°, with null thresholds set 
at –50 dB, –60 dB, –70 dB, –80 dB, and –90 dB. For a 
detailed analysis, Fig. 16 presents the simulation results for 
a single null at 20° with a null threshold of െ50 dB. The 
results demonstrate that the null points were accurately 
placed at the predefined locations, though with reduced 
null depth levels. The CDF in Fig. 17 further shows that 
the APT method without mutual coupling (No MC) 
achieves lower SLLs, indicating more effective side lobe 
suppression. However, when mutual coupling (MC) is 
considered, the performance of the APT method is 
significantly compromised, both in terms of null 
placement precision and side lobe level control. Fig. 18 
depicts the simulation results for the specific case of a 
single null at 20° with a null threshold of –90 dB, while the 
remaining results are summarized in Table I. The findings 
reveal that although the null points were accurately 
positioned at the desired locations, the null depth levels 
were shallower, and controlling the side lobes at –30 dB 
proved challenging, despite the main lobe being well 
maintained. 
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Fig. 16. Optimized patterns when considering mutual coupling effects 

(null at 20° and null threshold set at െ50 dB). 
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Fig. 17. CDFs of SLLs for scenarios with and without mutual coupling 

effects (null at 20° and null threshold set at -50 dB). 
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Fig. 18. Optimized patterns when considering mutual coupling 

effects (null at 20° and null threshold set at -90dB). 

TABLE I. NDL AT 20° WITH AND WITHOUT MUTUAL COUPLING 

EFFECTS 

Threshold 
NDL (dB) 

No MC MC 
െ50 dB െ49,595 െ48,88 
െ60 dB െ59.93 െ55.01 
െ70 dB െ69.95 െ59.19 
െ80 dB െ79.98 െ61.86 
െ90 dB െ90.21 െ61.58 

VI. CONCLUSION 

Our paper presents a novel beamforming approach 
utilizing GWO in conjunction with two CHTs, namely 
APT and OFRT, for interference suppression in ULA. 
Through evaluation across five scenarios-including 
convergence rate, placing single null, multiple nulls, and 

broad nulls on the radiation pattern in an ideal case, and 
the impact of interference-we demonstrate the efficacy of 
APT and OFRT in mitigating interference while 
maintaining main lobe width and sidelobe levels. Our 
results indicate that configurations employing APT 
consistently outperform those utilizing OFRT across all 
evaluated metrics. This underscores the potential of APT 
as a promising solution for interference suppression in 
radio communication systems employing smart antennas 
like 5G and radar. 

Furthermore, we emphasize the significance of CHTs as 
powerful tools to harness metaheuristic algorithms for 
solving constraint optimization problems effectively. 
Looking forward, we plan to explore alternative CHTs 
such as the  -constrained method or the stochastic 
ranking method to address challenges posed by unknown 
noise directions in future research endeavors, thereby 
enhancing the capabilities of advanced antenna systems in 
interference mitigation. 
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