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Abstract—In this paper, the authors propose a novel, precise, 
and approximate expression for the generalized fading model 
using the Moment-Generating Function (MGF). We have 
evaluateda closed-form mathematical solution for the 
Average Bit Error Rate (ABER) of Binary Phase Shift 
Keying (BPSK), the Symbol Error Rate (SER)or symbol 
error probability (SEP) of Quadrature Phase Shift Keying 
(QPSK), andTriangular Quadrature Amplitude Modulation 
(TQAM) over  fading channel. Notably, this fading 
model represents a small-scale variation of the fading signal 
and encompasses important fading models like Rayleigh, 
Nakagami-m, Hoyt, one-sided Gaussian, Weibull, and η-μ as 
special cases. Additionally, it accurately captures the 
nonlinearity and non-homogeneous nature of the fading 
channel without a Line-of-Sight (LOS) component. To 
simplify the evaluation of ABER and SER, we utilize 
exponential-based approximations of the Gaussian -
function, providing an accurate and mathematically 
straightforward solution to the SER integral. This approach 
simplifies the complicated integrals, resulting in an 
analytically tractable SER expression. The SER results of 
QPSK, obtained through the exact, proposed analytical 
expression, Monte Carlo simulation methods, and, result 
obtained using the -function approximation proposed by M.
Bilim and D. Karaboga for the combination of fading 
parameters (ɑ = 0.5,  = 1.2,  = 1.5) are 0.0163445278046601, 
0.0163403059168915, 0.0162660000000000, and 
0.0186945839664040, respectively, at 28 dB. These findings 
affirm the superiority of the proposed scheme. We have 
validated the analytical findings through Monte-Carlo 
simulations. Moreover, the analytical and simulated SER 
curves presented in this paper for various modulation 
formats and fading parameter values further confirm the 
effectiveness of the proposed SER expression.� 

Keywords—Average Bit Error Rate (ABER), Symbol Error 
Rate (SER), Moment-Generating Function (MGF), α-η-μ 
distribution and Gaussian -function. 

I. INTRODUCTION

In the modern era, technology is indispensable, and cell 
phones are widely used. As a result of its numerous 
applications, wireless communication continues to catch 

researcher’s attention. In a wireless communication 
system, ensuring reliable reception of signals and hence 
achieving a low error rate is of utmost importance. These 
parameters are essential for designing robust 
communication systems that enable error-free bit 
reception at the receiver, maximizing data rates, and 
optimizing the communication channels [1]. Here, we 
address this issue by finding out the closed form solution 
of error performance for various modulation schemes. 
There are various types of fading channels. G. 
Fraidenraich and M. D. Yacoub [2] introduced two 
generalized fading distributions, the  and 

.In the presented work, the authors chose the 
generalized fading channel . In this paper, the 
work is devoted to computing average BER, and SER over 
the  fading channel, which helps in evaluating 
other important fading channels as their special cases like 
Nakagami-m, Rayleigh, Nakagami-q (Hoyt), , 
Weibull, and one-sided Gaussian. 

In the performance evolution of wireless transmission 
with numerous potential system configurations, MGF-
based methodology is one of the best ways to estimate the 
bit error rate [3]. This work aims to generate unified MGF 
expressions for generalized model. The formulas 
are illustrated using straightforward mathematical 
operations. Essential performance parameters, including 
the average bit error rate, can be easily, directly, and 
unrestrictedly evaluated using the generated MGF 
expression [3]. BER, and SER are important metrics of 
numerous modulation techniques over Additive White 
Gaussian Noise (AWGN) and fading channels in 
communication systems. 

When analyzing the performance of wireless 
communication systems over AWGN and fading channels, 
the exact form of the Gaussian -function is essential. 
Nevertheless, this form leads to an impracticable definite 
integral when attempting to compute important metrics 
such as the Symbol Error Rate (SER) of various digital 
modulation methods over a fading channel. Therefore, it is 
essential to transform the exact expression of the Gaussian 
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-function into more manageable forms. There are a 
number of Gaussian -function approximations and 
bounds available in the literature [4–16] to satisfy this 
criteria. In [16], we compared available -function 
approximations [4–15] with [16] and demonstrated that 
our approximation performs the best. The proposed 
approximation [16] is a novel, straightforward, and tighter 
approximation of the -function that makes use of the 
two-point Gauss Quadrature rule, considering its validity 
for up to n points. The selection of nodes and weights for 
their evaluation was carefully made to minimize the 
approximation error. Therefore, to achieve better accuracy 
of error performance over fading channels, we have 
chosen the approximation of -function proposed in [16]. 

Furthermore, a closed-form solution is required to 
analyze the effect of fading in wireless communication. In 
this context, we have derived a novel exact and 
approximate expression for α-η-μ fading using the MGF 
approach. We propose a closed-form solution for 
theAverage Bit Error Rate (ABER) of BPSK, the Symbol 
Error Rate (SER) of QPSK, and TQAM-16 modulation. 

This paper is divided into four sections. In Section II, 
the generalized models under consideration are thoroughly 
reviewed. We develop new, unified Moment Generating 
Function (MGF) formulas for generalized wireless fading 
distributions. The applications that show how the newly 
developed MGF expressions can be used to examine 
wireless communication networks are presented in 
Section III. We use these MGF formulas to derive average 
bit and symbol error rates and compare them to 
numerically computed results and discoveries from the 
literature. The contributions presented in this work are 
finally concluded in Section IV. 

II. α-η-μ FADING CHANNEL AND ERROR PERFORMANCE 
ANALYSIS 

A. The α-η-μ Distribution 
The pdf of generalized α-η-μ distribution is [17]. 
 

  
 

 

   (1) 

where , and represent the factors responsible for 
dealing with nonlinearity, dealing with unequal power 
distribution between in-phase and quadrature components, 
and taking into account the number of multipath clusters, 
respectively [17]. Here,  defines the average SNR,  
represents the instantaneous Signal-to-Noise Ratio 
(SNR), corresponds to the modified Bessel function of 
the first kind, and denotes the Euler gamma function. 

B. Generalized Average Bit Error Rate of BPSK 
The average symbol or bit error rate for binary symbols 

affected by a fading channel can be computed by 
averaging the symbol error rate over the AWGN channel, 
utilizing the probability density function of the fading 

envelope [17]. Consequently, the resulting formula 
obtained through this averaging procedure typically 
incorporates the -functionwithin the equation[17]: 

 ∞                           (2) 

where is the -function represented as [1]: 

                                  (3) 

Using recentlyproposed approximation of  for 
[16], we can write 

 

  (4) 

C. Generalized Moment Generating Function (MGF)  
The Laplace Transform of the fading PDF can be used 

to determine the Moment Generating Function 
(MGF) [17]. The moment-generating function can be 
expressed in terms of theLaplace Transform. 

  (5) 

Eq. (1) can also be represented as: 

   (6) 

where  is thefirst kind modified Bessel function. 
Using Eqs. (5) and (6), we get 

 ∞ dγ (7) 

According to [18] and [19], 

 Γ
∞                             (8) 

                               (9) 

With a few manipulations, Eq. (7) can be expressed as 
∞ d  (10) 

where and  
Eq. (10) yields the expression by combining terms from 

Eqs. (8) and (9) 
∞∞  (11) 

where 
 Γ

and  

Using [19, eqn. (2.24.1.1)], a closed-form solution to 
the integral in Eq.(11) can found, and is given by 

∞ ϕ
ϕ (12) 

where  , and here, we 
specified  such that the gcd  (greatest 
common divisor is 1) to account for non-integer values of 

. 
where, 
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D. The Average Bit Error Rate of BPSK over α-η-μ 
Fading Channel 

The average bit error rate of BPSK over α-η-μ fading 
channel Eq. (2) can also be written into the following form 
using Eq. (3) 

                     (13) 

Now using approximation of given in Eq. (4), 
we can write Eq. (13) as  

∞   (14) 

Now using Eq. (5), we can write Eq. (14) as 

  (15) 

where,
 

E. SER of QPSK over α-η-μ Fading Channel  
The exact expression of symbol error rate for QPSK 

over the AWGN channel is defined as [20]: 

  (16) 

As per the definition, the symbol error rate of QPSK 
over the α-η-μ fading channel can be calculated using 
following expression: 

 (17) 

By employing Eq. (16), we can express Eq. (17) in the 
following form: 

 (18) 

Using the approximation of  given in Eq. (4) to 
Eq. (18), we can now write the final SER expression of 
QPSK over  fading, as  

  (19) 

where,  

 

 

 

F. SER of TQAM-16 over α-η-μ Fading Channel  
According to [21], the standardized equation of SER for 

different modulation techniques over the AWGN channel 
is as follows: 

3 3
(20) 

The Signal-to-Noise Ratio (SNR) in this case is 
represented by , while the modulation technique 
parameters, average count of nearest-neighbours, and 
average count of pairs of adjacent nearest-neighbours are 
represented by , , and , respectively [21]. The 
following ,  and  are the 
defined SER parameters for TQAM-16 constellations [21]. 
The symbol error rate of any digital modulation technique 
is typically specified by the linear combinations of 
integrals below, or their special cases [1]: 

  (21a) 
∞  (21b) 

where,  is the order of  and is the probability 
density function of the channel. and  are the real 
positive constants that vary depending on the specific 
digital modulation scheme [1]. 

As per the definition, the SER of TQAM-16 over fading 
channels can be derived as: 

 (22) 

By employing both Eq. (20) and Eq. (22), we can derive 
a novel equation for SER over fading channel for 
TQAM-16.  

 (23) 

The final expression of symbol error rate over 
fading channel for TQAM-16 is obtained by 

applying the complementary error function  
approximation Eq. (4), in Eq. (23). 

 (24) 

where, 

 

 

; 

=  
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III. RESULTS AND DISCUSSION 

The accuracy of the proposed closed approximation is 
tested for different values of fading parameters. As a result, 
Fig.1 depicts that the average bit error rate graph obtained 
through the approximation aligns with the exact results, 
the analytical results, and the outcomes from Monte Carlo 
simulations across all possible cases of the  fading 
channel. Additionally, it is noticeable from Fig. 1 that the 
ABER performance of the BPSK modulation technique 
over the fading channel for and  
is better than that for and and it is 
further improved when and . 
From these trends in ABER results, we can affirm that, for 
a given value of α, either κ or μ, or increasing both of them, 
enhances the ABER performance of the BPSK modulation 
technique. The ABER degrades as we increase the fading 
parameter  

Additionally, Table I compares the ABER of BPSK 
over  fading channel in terms of accuracy. Table I 
highlights that the exact value of average BER of BPSK 
for and , is 0.0952331636163539 
at SNR 10 dB and their corresponding analytical and 
simulation results are 0.0952652193693010 and 
0.0954500000000000, respectively. Similarly, the actual, 

analytical, and simulation values of the average BER of 
BPSK at 10 dB are 0.00311760605032327, 
0.00311692808400305, and 0.00313175000000000, 
respectively, for and  . These 
findings demonstrate that, for all SNR values, the results 
obtained by analytical expression, Monte Carlo 
simulations, and exact expression using -function are 
also virtually indistinguishable. 

 
Fig. 1. Average BER of BPSK over  fading channel. 

TABLE I. ACCURACY COMPARISON OF AVERAGE BER OF BPSK OVER  FADING CHANNEL 

BPSK 
SNR (dB) Exact Analytical Simulation 

 
0 0.195571254757108 0.195741445724338 0.195900000000000 

10 0.0952331636163539 0.0952652193693010 0.0954500000000000 
20 0.0393130079327208 0.0393183147814793 0.0390140000000000 

 
0 0.158696471825131 0.158489026352692 0.158759000000000 

10 0.0486948114754481 0.0486631170792050 0.0481885000000000 
20 0.00991889026230215 0.00991581937241815 0.00986400000000000 

 
0 0.129360127023766 0.129457723972482 0.129259500000000 

10 0.0131682902725477 0.0131713934833430 0.0131803750000000 
20 0.000563127132142243 0.000563206852516639 0.000570250000000000 

 
0 0.106299299898227 0.107574791614436 0.106333250000000 

10 0.00311760605032327 0.00311692808400305 0.00313175000000000 
20 8.83993040290858e-06 8.83890630193674e-06 8.75000000000000e-06 

 

 
Fig. 2. SER of QPSK over  fading channel. 

Fig. 2 shows how different fading variables affect the 
performance of the systems using QPSK modulation, 
emphasizing how fading parameters affect symbol error 
rate and making this tendency quite evident: if one or more 
fading parameters, α, η, or μ, of the channel increases, the 
SER performance of QPSK modulation scheme decreases. 
The presented graphs in Fig. 2 show that the computer 
simulations and the derived mathematical formulation are 
in full agreement. Furthermore, the Q-function 
approximation put forward by Bilim and Karaboga [15] is 
also utilized to establish the mathematical expression of 
SER for QPSK modulation; however, it is found to be less 
precise than the method derived in this work. The other 
technique is shown in Fig. 2 as being inaccurate at low 
SER values. As a result, the proposed closed form 
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expression is more accurate, and the findings of Fig. 2 
amply show that the proposed approximation performs 
better in terms of SER accuracy than the results obtained 
using the approximation proposed by Bilim and Karaboga 
[15]. 

Additionally, Table II offers a precise comparison of 
QPSK's symbol error rate over the   fading channel. 
Table II shows that the exact SER of QPSK for 

 is 0.379353095378426 at SNR 0 dB. The 
results obtained from the Monte Carlo simulations and 
analytical expressions are 0.379072000000000 and 

0.379556944158262, respectively, while the SER 
determined by Bilim and Karaboga [15] is 
0.359955005453684. Similarly, the exact, proposed 
analytical expression, computer simulations, and result 
obtained using the Q-function approximation proposed by 
Bilim and Karaboga [15] for fading parameters 

 at 14 dB are 0.0740630792356347, 
0.0740423482486165, 0.0745020000000000, and 
0.0850723651555381, respectively. These findings 
demonstrate that the exact and proposed results have better 
match than the Q-function approximation proposed by 
Bilim and Karaboga [15]. 

TABLE II. ACCURACY COMPARISON OF SER FOR QPSK MODULATION OVER  FADING CHANNEL 

QPSK 
SNR (dB) Exact Analytical Simulation M. Bilim and D. Karaboga 

 
0 0.379353095378426 0.379556944158262 0.379072000000000 0.359955005453684 

14 0.146484230892734 0.146495591159360 0.146616000000000 0.148760527304649 
28 0.0408819839862550 0.0408811619799807 0.0410940000000000 0.0429838396391849 

 
0 0.358223921686449 0.358032003770186 0.358246000000000 0.353565205668677 

14 0.100933984303989 0.100892567854071 0.101362000000000 0.109873290660234 
28 0.0163445278046601 0.0163403059168915 0.0162660000000000 0.0186945839664040 

 
0 0.345350914846178 0.344997116167442 0.346246000000000 0.350611679593865 

14 0.0740630792356347 0.0740423482486165 0.0745020000000000 0.0850723651555381 
28 0.00715801493375546 0.00715770009754221 0.00722000000000000 0.00874111724816721 

 
0 0.342002079443748 0.342277352767469 0.342898000000000 0.380630984371228 

14 0.0184308605320168 0.0184330035745031 0.0185940000000000 0.0254021615882278 
28 0.000197067264911575 0.000197075952748361 0.000202000000000000 0.000280445263779686 

Fig. 3 illustrates the impact of TQAM-16 modulation 
schemes for various fading factors, highlighting the 
effect of fading parameters on SER. Fig. 3clearly shows 
a clear trend: the SER of the TQAM-16 modulation 
scheme drops as any fading parameters α, η, or μ rise. 
The depicted graphs demonstrate the new, derived 
mathematical expression and computer simulations to 
be in perfect accord.  

In addition, Table III provides a comprehensive 
numerical comparison of the exact, analytical, and 
proposed results for the SER of TQAM-16 over  
fading channel. According to Table III, the actual value 
of the SER of TQAM-16 for the conditions of 

 at 40 dB SNR is 
0.0338301253120309, and the results derived using the 
analytical expression and Monte Carlo simulations are 
0.0338195271333271, and 0.0336750000000000. It is 
clear that the proposed analytical and simulation results 
are closest to the actual value of SER. Furthermore, 
similar conclusions can also be drawn from Table III for 

 at 0 dB, 0.746159396867051, 
0.745934928764225, and 0.745934928764225 for exact, 
analytical, and simulation, respectively. As a result, the 
proposed work is precise for all values of SNRs. 

 

 
Fig. 3. SER of TQAM-16 over  fading channel. 

TABLE III. ACCURACY COMPARISON OF SER OF TQAM-16 OVER FADING CHANNEL 

TQAM-16 
SNR (dB) Exact Analytical Simulation 

 
0 0.678635400394207 0.676231154643377 0.672700000000000 

20 0.215160262745535 0.214933334240360 0.212885000000000 
40 0.0338301253120309 0.0338195271333271 0.0336750000000000 
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0 0.690269985643655 0.687617783114101 0.685970000000000 

20 0.122909639833508 0.123097946201206 0.121860000000000 
40 0.00417701618835439 0.00418302883124142 0.00399200000000000 

 
0 0.746159396867051 0.745934928764225 0.740210000000000 

20 0.0515610908459058 0.0516211612184090 0.0509625000000000 
40 0.000238886768744605 0.000239045345247564 0.000235000000000000 

 
IV. CONCLUSION 

In this paper, the closed-form solutions of average BER, 
and SER using the Moment-Generating Function (MGF) 
for BPSK, QPSK, and TQAM-16 over  fading 
channel are derived. The validity of the expression is 
demonstrated by how closely the exact and simulation 
results match the analytical results. The proposed closed-
form solution of BPSK, QPSK, and TQAM-16 is obtained 
by using the exponential-based approximations of the 
Gaussian Q-function. This leads to more efficient 
computational assessment and streamlined analytical 
manipulation because of the newly created MGF 
expressions. The error rates for BPSK, QPSK, and 
TQAM-16 are analyzed to show the applicability and 
validity of the new MGF expressions. The proposed 
results facilitate unrestricted performance analysis and 
precise planning and inspire researchers to delve further 
into these emerging fading models. 
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