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Abstract—The Internet of Things (IoT) is increasing 
and encompasses various areas such as smart homes, 
smart cars, and e-healthcare. Identifying the source of 
the transmitted data is important because information 
without a known source is meaningless. The running 
applications must be able to determine their position 
without relying on the Global Positioning System (GPS), 
as the signals are attenuated indoors and in difficult 
environments. Wireless Sensor Networks (WSNs) play 
an important role in positioning IoT devices. The 
Distance Vector-Hop (DV-Hop) algorithm can be 
utilized to localize unknown sensor nodes. DV-Hop is 
used due to its simplicity and low cost. It is used to 
locate a node several hops away from anchor nodes. 
However, the accuracy achieved is not satisfactory. On 
the other hand, the Received Signal Strength Indicator 
(RSSI)algorithm is employed to approximate the 
positions of the sensor nodes, but its effectiveness is 
limited to a single hop from the anchor nodes. In this 
paper, the Kalman Filter Multilayer Perceptron-
Distance Vector Received Signal Strength Indicator 
(KF-MLP-DVRSSI) algorithm is presented to improve 
the accuracy and reliability of the DV-Hop algorithm 
without the need for additional hardware. The 
proposed algorithm adjusts the RSSI values of 
connections between one-hop neighbors using the 
Kalman Filter (KF). The Kalman filter predicts the 
variables and estimates the states of the future system 
based on the prior predictions. A Multilayer 
Perceptron (MLP) is then used to learn from the actual 
data and adjust the weights to produce accurate output 
data. The simulation results demonstrate the 
performance of the proposed approach compared to 
three existing models.  
 
Keywords—wireless sensor networks, Distance Vector 
Hop (DV-HOP), sensor node localization, localization 
accuracy 

I. INTRODUCTION  

Wireless Sensor Networks (WSNs) based on the 
Internet of Things (IoT) are often used for various 
monitoring applications. Interest in localization has 
increased as the positioning of sensor data is crucial in the 
IoT. Therefore, it is essential to localize these sensor nodes 
[1]. 

The Distance Vector-Hop (DV-Hop) algorithm works 
in a multi-hop process. It utilizes the network topology to 
estimate the position of the sensor nodes. With this 
technique, the sensor nodes can reach the anchor nodes 
several hops away from the anchor nodes. A smaller 
number of anchor nodes can reduce cost [2]. However, 
most multi-hop localization algorithms can only make 
accurate position predictions if the sensors are well 
connected. This connectivity can be achieved through a 
denser network structure. The DV-Hop algorithm first 
calculates the average hop distance using anchor nodes. 
Subsequently, each unknown node determines its distance 
from an anchor node by multiplying the number of hops 
from such an anchor node by the average hop distance. 
Then, the triangulation technique may be utilized to 
calculate its approximate position. The errors in 
calculating the average hop distance and estimating the 
hop count are the main issues with the DV-Hop technique, 
which reduces the localization accuracy [3]. 

The authors in [4] suggested improving the accuracy of 
the DV-HOP model in the distance estimation and position 
calculation steps by utilizing evolutionary computation. 

Artificial Neural Networks (ANNs) are used to mitigate 
the effects of nonlinearity and multimodality in indoor 
environments. Several approaches based on ANNs have 
been presented to identify the connections between input 
and output vectors by training actual data in an offline 
phase. The Multilayer Perceptron (MLP) is one of these 
approaches [5]. 

The novelty in this work is the Kalman Filter Multilayer 
Perceptron-Distance Vector Received Signal Strength 
Indicator (KF-MLP-DVRSSI) algorithm, which decreases 
the DV-HOP algorithm’s localization error. The proposed 
algorithm combines DV-HOP and the Received Signal 

Journal of Communications, Vol. 19, No. 9, 2024

449doi:10.12720/jcm.19.9.449-457

 
Abdelrahman Almomani1,* and Fadi Al-Turjman2,3 

Manuscript received June 3, 2024; revised July 22, 2024; accepted 
August 6, 2024; published September 24, 2024.  



Strength Indicator (RSSI)to improve the average hop 
distance calculation. The proposed algorithm also employs 
Kalman Filter (KF) and MLP to refine RSSI values and 
mitigate the effects of nonlinearity and indoor 
environment. The paper is organized as follows: Section I 
contains an introduction, Section II provides related work, 
Section III introduces the system model, Section IV 
provides the methodology, and Section V offers the results 
for various scenarios. Finally, Section VI concludes the 
paper. Section VII contains limitations and future work. 

II.  RELATED WORKS 

As technology advances, there will be significant 
benefits for a wide range of human activities. The 
capabilities of sensor nodes will increase while 
manufacturing costs will decrease. Consequently, the 
range of WSN applications, as shown in Fig. 1, is expected 
to continue. In these applications, the data obtained via the 
network is of little use if it lacks location information. 
including of location information plays a vital role in both 
the networking and application of WSNs [6]. 

 
Fig. 1. WSNs application fields. 

GPS is the most important method for determining 
position outdoors. But using the Global Positioning 
System (GPS) is not feasible indoors. However, the 
localization of any object with GPS is associated with 
higher power consumption and costs. Since GPS requires 
a direct line-of-sight (LoS) for satellites, it is impractical 
to use GPS indoors. In addition, the accuracy of GPS is 
five meters, which is efficient for outdoor use but not 
indoor use. In typical indoor localization systems based on 
WSNs, anchor nodes act as reference nodes that obtain 
their location from the GPS or a manual configuration.  
The other type of sensor node is considered the majority 
in the network and starts its operation without prior 
knowledge of its coordinates. The position of most of these 
sensor nodes is the main objective of localization by 
utilizing the information of the anchor nodes [2]. 

Given the characteristics of networked sensors, such as 
limited power, small size, and low cost, localization is a 
challenge in WSNs-IoT. The indoor environment 
influences the transmission rate, scalability of the network, 
and management of sensor nodes [7]. The factors that 
influence the management of sensor nodes are spectrum 
congestion, power consumption, network lifetime, and 
packet collisions [8]. 

A. Indoor Positioning Issues 
Since radio signals propagate between nodes, the main 

issue of indoor positioning is random obstacles that cause 
signal reflection, diffraction, absorption, and scattering. 

Consequently, Non-Line-of-Sight (NLOS) 
communication occurs between the nodes. This can be 
characterized by the approximation of NLOS errors to 
various distributions, including Gaussian, uniform, and 
exponential distributions, depending on the prevailing 
conditions. Location determination becomes more 
challenging in real-world scenarios when nodes are 
affected by NLOS communication, terrain irregularities, 
and hardware malfunctions. Irregularities in the field can 
lead to network holes where signal propagation is 
completely obstructed in certain areas. This can be caused 
by significant obstructions such as rocks or buildings. 
Larger holes force the signals to take longer paths, 
resulting in substantial deviations from the distance 
between nodes [9]. 

B. Localization Algorithms Overview 
Localization algorithms can be divided into centralized 

and distributed algorithms. Centralized algorithms use a 
central unit to perform all calculations. while distributed 
algorithms perform all calculations at each sensor node. 
Therefore, most localization studies are based on 
distributed algorithms. There are two main categories of 
distributed algorithms: ranging-based and ranging-free 
algorithms.  

Ranging-based techniques are utilized to measure the 
distances between neighboring sensors. These 
measurements are time and power-dependent.  Time-of-
Arrival (TOA) and Time-Difference of Arrival (TDOA) 
are time-based measurements. The ToA technique 
calculates the distance between sensors by evaluating 
signal’s arrival time difference from the source sensor to 
the target sensor. In contrast, the TDoA technique 
calculates the distance between sensors by evaluating the 
difference in arrival time of the signal between the source 
sensor and the target sensor. On the other hand, ToA and 
TDoA require time synchronization between the sensors 
to reduce the localization error. The Received Signal 
Strength Indicator (RSSI) is an example of a measurement 
that depends on power to compute the distance between 
sensors. The RSSI technique is attractive because it is 
inexpensive and does not require additional hardware such 
as clock synchronization. Nevertheless, the RSSI 
technique is affected by dynamic environments and 
interferences that reduce localization accuracy [1–4]. 
Range range-based approaches can achieve high precision, 
but require additional hardware, higher costs and higher 
power consumption [3]. 

When a large number of anchor nodes are deployed, 
ranging-based algorithms suffer from latency, power 
consumption, costs, and localization errors. The authors 
in [10] proposed an underwater localization algorithm to 
mitigate these issues. The proposed fitness function 
integrates hop count, delay, and ToA error. Compared to 
existing localization algorithms, the proposed algorithm 
effectively mitigates these issues. However, the 
optimization performance is affected by insufficient 
convergence of the Particle Swarm Optimization (PSO). 

Ranging-free techniques work in multi-hop that utilize 
the network topology to estimate the position of the sensor 
nodes. In these techniques, the sensor nodes can reach the 
anchor nodes several hops away from the anchor nodes [2].  
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Connectivity, communication range, received signal 
strength (RSS), directly and indirectly received signals 
(through multi-hop communication), the number of anchor 
nodes, WSN density, noise, interference, and obstacles, all 
these factors influence positioning in WSNs. The DV-
HOP method is an example of a range-free approach [4].  
The authors in [11] have identified certain shortcomings 
of the original DV-HOP algorithm, including issues 
related to dynamic environments, accuracy, and stability. 
In contrast, the authors in [12] presented many advantages 
of the DV-HOP algorithm. First, DV-HOP is classified as 
a range-free algorithm, which means that it does not 
require any additional hardware. It also minimizes 
communication overhead, power consumption, and 
congestion. Furthermore, the uniformly distribution of 
sensors can be adjusted. This adaptability makes DV-HOP 
suitable for different network sizes and densities. 
Scalability in large networks is another advantage, 
ensuring its performance and simplicity in location 
estimation of sensor nodes. These features make DV-HOP 
a preferred choice for positioning in various applications, 
instilling confidence in its performance in large networks. 

The authors in [11] combined DV-HOP and RSSI 
values to improve the estimation of hop size. This 
combination reduced the localization error. The 
improvement in [13] was done using RSSI and polynomial 
approximation with the DV-HOP technique to obtain more 
accurate distances between sensor nodes. The Improved 
Least Square DV-Hop algorithm (ILS-DV-HOP) in [14] 
integrates the DV-Hop technique with the weighted least 
squares method. The integration aims to adjust the hop size 

calculation to enhance localization accuracy. Improving 
connectivity in the network is essential to enhance 
localization accuracy. The authors in [15] proposed a 
distributed connectivity-based DV-Hop algorithm by 
considering the connectivity within two hops. 

The authors in [16] suggested an approach named 
Optimum Anchor Nodes Subsets. The proposed approach 
utilizes the binary PSO algorithm to select the optimal 
subset of anchor nodes as reference nodes to calculate the 
hop size. The results of the proposed algorithm 
demonstrate better localization accuracy. 

To solve the topology issues, the authors in [17] 
proposed a combination of DV-HOP and adaptive particle 
swarm. The proposed algorithm calculates the hop size 
using the DV-HOP technique, and then applies the PSO 
algorithm. The results show higher accuracy for network 
topology issues.  

The effects of signal attenuation, NLOS conditions, 
multipath fading phenomena and RSSI measurements 
limit RSSI accuracy. 

To minimize costs and power consumption, only the 
anchor nodes are equipped with GPS modules. The other 
nodes can identify their location utilizing localization 
algorithms. The procedure for determining a node’s 
unknown location is termed node self-localization. Table 
I shows the gaps in related works. The proposed algorithm 
improves the localization accuracy with minimum costs. 
The proposed algorithm in this paper overcomes most of 
the weaknesses of the related works listed in Table I and 
improves the localization accuracy at minimum cost. 

TABLE I. SEVERAL HYBRID ALGORITHMS WITH STRENGTHS AND WEAKNESS POINTS 

Reference No. The algorithm and strengths Weakness 

[18] 

-An innovative clustering based technique for identifying outliers in distance 
measurements to reduce errors, since the accuracy of RSSI is limited by the 
effects of signal attenuation, non-line-of-sight (NLOS) conditions, multipath 
fading phenomena and RSSI measurements. 
-Spatial correlation analysis is used to determine the location where the largest 
proportion of beacon signals are detected. 
-mean shift clustering is utilized. 

Computational complexity and obstructions 
in WSNs. 

[19] RSSI-Least Squares Support Vector Regression which saves costs and ensures 
reliability. Accuracy and the noise interference. 

[20] 

The algorithm is based on clustering and particle swarm optimization (PSO) to 
mitigate the NLOS effects. If sensor nodes are located in a certain area with 
obstacles, it is not possible for a pair of nodes to communicate directly. Instead, 
the data must be sent via many intermediate nodes. 

Scalability and reliability in a changing 
environment. 

[21] A new triangle centroid localization algorithm to improve accuracy by 
mitigating the fluctuations of RSSI values using the Kalman filter. 

It is susceptible to errors caused by NLOS, 
and it is sensitive to signal fluctuations. 

[22] 

The algorithm uses Multi-Communication Radius Broadcasting, the weight 
correction factor is applied and the Sparrow search algorithm. All these steps 
are implemented in the DV-Hop improvement, which is called Hop Count 
Optimization and ranging correction (HCRDV-Hop) and is based on hop count 
optimization and ranging correction. 

Complexity and energy consumption 

[23] 

The algorithm introduces an additional communication radius. The algorithm 
revises the minimum hop count received by the unknown node that is closer to 
the anchor node. This technique mitigates the problem that the actual distances 
vary greatly for the same number of hops. 

Complexity, environmental issues, 
communication overhead and energy 

consumption 

[24] Indoor positioning system uses AI approaches with fuzzy logic to improve 
localization accuracy. 

Cost, power consumption, and processing 
time. 

[25] An improved adaptive genetic algorithm (IAGA) is introduced to improve 
localization accuracy. 

Complexity, power consumption, and 
convergence speed.  

[26] 
This approach improves the localization accuracy of the moving objects by 
integrating a Feed Forward Neural Network (FFNN) and RSSI. 13 anchor 
nodes with RSSI are used. The RSSI values are used as input for the FFNN. 

Environmental changes, not comprehensive, 
mobility and scalability. 

[27] This approach to localize Alzheimer’s patients combines artificial neural 
network (ANN), RSSI values via the X-CTU software. 4 anchor nodes are used. 

Real time processing issues, complexity and 
environmental issues. 
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The X-CTU software is used to collect RSSI measurements. ANN is used for 
training, backpropagation and location estimation. 

[28] 
The combination of MLP and RSSI fingerprint data in non-isomorphic grid 
regions achieves precise localization. The approach is implemented by training 
anchor node information. 

Environmental changes and complexity of 
non-isomorphic grid design. 

[29] 
In this approach, the information is combined in a fusion method by integrating 
a linear and adaptive Kalman filter to combine the positions obtained from 
multiple ultrasonic local positioning systems (ULPS). 

Interference, limited range that requires 
LOS, complexity and synchronization 

requirements. 

[30] To filter RSSI values, a Fourier-transform Fuzzy c-means KF (FFK) is used in 
this approach. 

High processing requirements, noise 
variation of RSSI values and complexity. 

[31] Integration of DV-HOP, RSSI and Kalman filter to improve positioning 
accuracy. The improvement of DV-HOP is up to 50%, 

Environmental changes, nonlinearity issues 
and mobility. 

This work Integration of DV-HOP, RSSI Kalman filter and MLP to improve positioning 
accuracy without additional hardware. Mobility. 

III. SYSTEM MODEL DISCERPTION 

Consider a random distribution of WSNs in an indoor 
environment covering a square area. The network 
environment is considered dynamic. All sensors are 
equipped with the same transmission power and 
communication range. Assumptions are made about large-
scale fading and multipath fading. It is also essential to 
consider the dynamic nature of the network environment. 
Given the random distribution of the sensor nodes, the 
standard model for indoor positioning is not applicable in 
this scenario. The reason is that the distance between each 
pair of sensors is different, which leads to an increase in 
the average localization error. Each sensor has its own KF 
so all filters can work simultaneously and produce their 
respective estimates. 

There are two categories of sensor nodes: Anchor nodes, 
which are manually configured and used during the 
training phase to collect RSSI measurements for building 
the training database; Each neuron in the hidden layer uses 
its sigmoid activation function to produce the final output. 
Through this process, each neuron compares the generated 
output with the desired output to calculate the error. 
Similar to a data scientist, the error is passed backward to 
the previous layers to adjust the weights of these neurons. 
This adjustment aims to determine the optimal value for 
the average hop distance between the anchor nodes and the 
hop count in the network. Unknown sensors are another 
category that needs to be localized using the DV-HOP 
approach and improved by the proposed algorithm. The 
broadcasted identifier packets reach the unknown nodes in 
the multi-hop. Calculating of distance between anchor 
nodes and unknown nodes considers the best path-based 
counter that computes the minimum hop count between 
them. The RSSI model is limited by RSS, but it is used to 
refine the distance between nodes. KF is used to refine the 
RSS values. We assume static conditions for unknown 
nodes and anchors in the network. The anchor nodes are 
randomly distributed over the network area to ensure 
comprehensive coverage. The communication range of 
anchor nodes and unknown nodes is identical. The sensors 
collect data and transmit it to the cloud, where AI models 
process it. The sensors act as data collectors. 

IV. METHODOLOGY 

The DV-HOP approach presented in [32] can be used to 
predict the location of unknown sensors in WSNs. The 
DV-HOP approach uses the hop size and hop count values 

to estimate the distance between sensor nodes. After 
estimating distances in the network, trilateration is utilized 
to obtain the sensor location. On the other hand, several 
factors affect DV-Hop’s accuracy such as: Obstacles, 
interferences, errors in hop size and hop count.  

The proposed approach involves the following phases: 
Flooding: In the flooding phase, the anchor nodes 
broadcast packets with an identifier (id), the coordinates 
of the anchor nodes (xi, yi), and hi, which signifies the 
number of hops from anchor node i, with the value of 
initially starting at zero. When an adjacent node receives a 
smaller hi packet from a particular anchor node, it records 
the anchor node and increments the hi counter value by 
one before forwarding it to its adjacent nodes. After the 
procedure is completed, each unidentified node receives 
the lowest hop count (hi) and discards packets with higher 
hi values as state data. The distance between the nodes is 
then calculated. The process begins by computing each 
anchor node’s hop distance (hopsizei) using Eq. (1). 

 
                      (1) 

 
The anchor nodes i and j locations are (xi, yi) and (xj, yj) 

respectively, while hij denotes the minimum number of 
hops between them. The anchor nodes utilize controlled 
flooding to distribute the hops in the network. Then, Eq. (2) 
is employed to ascertain the distance between the 
unidentified node and the anchor node i. 

 
                       (2) 

 

 
Fig. 2. DV-HOP algorithm requires three anchor nodes (ANs) for 

localization. 

Determine the position node: (x, y) is the position of the 
unknown node. Therefore, Eqs. (3)–(5) represent the 
distance to the anchor nodes as shown in Fig. 2. 
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  (3) 
 

  (4) 
 

  (5) 
 
The above Eq. (3)–(5) can be represented as AX = B, 

where A, X, and B are defined in Eq. (6)–(8). 
 

                 (6) 

 

         (7) 

                                     (8) 

To solve the equation AX = B, least squares approach 
is utilized. 

 
  (9) 

 
The received power in the free space propagation model 

can be articulated as: 
 

                             (10) 

 
Pt: transmitted power, Pr: received power, Gt: Tx 

antenna gain, Gr: Rx antenna gain, d: distance in meters, 
and λ: wavelength per meter. 

The correlation between distance and received power, 
simplified for a reference distance of 1 meter, is as follows: 

 
                     (11) 

The parameter A must be known in advance, as it is 
determined solely by the actual features of the radio, and 
η: path loss exponent. 

RSSI estimates of distance between Tx and Rx using 
RSS and an appropriate signal. Many localization methods 
utilizing RSSI primarily depend on trilateration which 
requires three anchor nodes to localize unknown nodes as 
shown in Fig. 3. 

 
Fig. 3. RSSI algorithm by trilateration technique. 

        (12) 

 
 and  represent the received signal 

power at distances d and , respectively. 

                     (13) 
 
The RSSI value demonstrates considerable fluctuations 

during the measurement process, and the implementation 
of filtering techniques has proven helpful in removing 
these unwanted fluctuations. The KF is utilized to process 
the RSSI data. The equations used in the KF refer to two 
models, one representing the process and the other 
modelling the measurements. 

 
  (14) 

 
  (15) 

 
              (16) 

 
               (17) 

 
Fk: the state transition matrix from time k to time k−1, 

while Wk: the process noise with a zero-mean normal 
distribution and covariance R. Zk: the observation vector 
at time k, where Hk is the matrix connecting the state vector 
to the measurements. vk: the observation noise with a zero-
mean white Gaussian distribution and covariance Q. The 
KF cycle contains two separate phases: a prediction step 
and a correction step. 

In the prediction step, the estimated state at time k−1 is 
applied to create the expected state estimate (a priori) at 
time k, based on the following expression: 

 
   (18) 

 
The covariance matrix of the expected errors can be 

represented with respect to the prior covariance matrix of 
the estimated errors Pk−1 and the covariance matrix of the 
process noise R, as shown below: 

 
  (19) 

 
Update step: This step includes the computing of the KF 

gain, which is defined as follows: 
 

  (20) 
 
The matrix that represents the covariance of the 

measurements is commonly referred to as Q, while the 
observation matrix is represented by H. Eventually, the 
posterior state estimate Xk and the accompanying 
covariance matrix Pk are revised according to the 
following procedure: To summarize, the posterior state 
estimate Xk and its corresponding covariance matrix Pk are 
updated using the following equations: 

 
                   (21) 

 
                          (22) 
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Machine learning approaches, such as Neural Networks 

(NNs), can be employed to enhance the accuracy of the 



While AI can improve the accuracy of the DV-Hop 
algorithm itself, it is not a replacement for the algorithm. 
The algorithm still needs to be used to obtain initial 
position estimates, which can then be refined using AI. 
Furthermore, the effectiveness of AI-based techniques 
depends on the quality of the data as well as the particular 
problem and data set. NN model used in this article is the 
MLP. The KF-MLP-DVRSSI approach shown in Fig. 4 is 
based on the range-free approach used in isotropic WSNs. 
MLP, which consists of two hidden layers. As illustrated 
in Fig. 4, the MLP model can be divided into three separate 
layers: the input layer, the hidden layer, and the output 
layer. It efficiently maps different inputs to a predefined 
set of needed outputs. MLP is learned using supervised 
learning methods such as Bayesian regularization and 
backpropagation. During the feed-forward phase, each 
neuron in the hidden layer passes the received signal to the 

next layer. Each neuron applies sigmoid activation 
function. Then, the signal is forwarded to the next layer. 
MLP can undergo training to predict the optimal weights 
for the distance calculation, considering factors such as hi, 

RSS values, and hopsizei. 
 

 
Fig. 4. KF-MLP-DVRSSI proposed model. 

The KF-MLP-DVRSSI algorithm, shown in Fig. 5, uses 
DV-Hop and RSSI. DV-Hop is used to locate unknown 
nodes at a distance of many hops from the anchor nodes, 
while RSSI is limited to one hop distance and multipath 
fading.  

 
Fig. 5. Flow chart of KF-MLP-DVRSSI. 

 
The DV-Hop algorithm incorporates RSSI values of the 

one-hop neighbors. The average of 20 RSSI measurements 
is used, which is then refined by KF. The parameters, hi, 

RSS values and hopsizei are used as inputs for the MLP 
model. These techniques are integrated as characteristics 
inside MLP model, which can optimize the weights to 
improve accuracy. The KF-MLP-DVRSSI algorithm is 
specifically designed for managing sensor nodes in the IoT 
era. 

Proposed approach evaluation: The evaluation criterion 
is established by computing the Average Localization 
Error (ALE) using the formula given: 

 

  (23) 

 
The variable (N-M) represents the number of nodes 

whose value is unknown, while R represents the 
communication range. 

V. SIMULATION RESULTS AND COMPARISON 

This section refers to an evaluation of the efficiency of 
the algorithm we have developed. We performed 
simulations for 50 randomly selected scenarios and 
computed the ALE values for these scenarios. The 
simulations which were conducted in an indoor 
environment with dimensions of 100 m × 100 m were 
carried out using MATLAB. 

In the first phase of the simulation, the distance vector 
hop (DV-HOP) algorithm is executed. In the second phase 
of simulation, RSSI is applied. In the third simulation 
phase, MLP-RSSI is implemented. In the last phase, KF- 
MLP- DVRSSI is executed, which aims to enhance the 
precision of the DV-HOP model by employing a NN with 
two hidden layers and five neurons in each layer. The 
training process utilizes the NN Toolbox in MATLAB. Fig. 
6 illustrates the configuration of anchor and unknown 
nodes, represented by red and black asterisks, respectively. 
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DV-Hop algorithm. For this purpose, an Artificial Neural 
Network (ANN) can be trained with a dataset of anchor 
nodes and the position estimates derived from the Distance 
Vector Hop (DV-Hop) method. Subsequently, the trained 
ANN can be utilized to predict the localization of the 
sensor node considering new coordinate values. 



 
Fig. 6. The distribution of sensor nodes in area 100×100 msquared. 

 
Fig. 7. RSSI Error with R = 10 m, path loss exponent = 3. 

 
Fig. 8. RSSI-MLP localization error with R = 10 m, path loss exponent 

= 3. 

Fig. 7 demonstrates the results of the RSSI-based 
localization algorithm, which has an error of 6.5304 m. 
This error is due to the dynamic environment and 
multipath fading, considered relatively high for indoor 
positioning systems. 

Fig. 8 shows the error of the RSSI-MLP algorithm, 
which combines RSSI and MLP with specific parameters 
(R = 10 meters, path loss exponent = 3, reference received 
power = −45.65 dB, learning rate = 0.01, activation 
function is a sigmoid function). The error obtained is 

2.7625 m. A comparison with the results in Fig. 6 shows 
an enhancement in accuracy through the implementation 
of RSSI-MLP. 

The NN is fed with input parameters such as the 
resulting coordinates, hopsizei, minimum hi, and average 
RSSI values, which are features that can be extracted from 
the data.The NN can be employed to understand a decision 
boundary that distinguishes the target nodes from the non-
target nodes in the DV-Hop algorithm based on RSSI 
within hopsizei. A widely used approach to avoid 
overfitting and ensure generalization is to reserve 10% of 
the data for validation and 10% for training. The extent of 
improvement will vary based on the specific 
characteristics of the data and the neural network’s design. 
Moreover, it is crucial to recognize that the NN serves as 
just one element of the DV-Hop algorithm, with additional 
factors like pre-processing, feature engineering, and 
experimental configuration significantly influencing the 
algorithm’s overall performance. Moreover, the 
enhancement is anticipated to vary depending on the 
specific application and the current level of accuracy 
already achieved. 

In this phase of the simulation scenario of KF-MLP-
DVRSSI, we changed the ratio of anchor nodes to evaluate 
the ALE. Throughout the localization phase, we assume 
static conditions for all nodes and anchors in the network. 
Table II displays the values of the parameters for Scenario 
1 (evaluating the varying ratio of anchor node), Scenario 
2 (evaluating the varying network density), and Scenario 
3 (evaluating the varying R). Fig. 9 displays the ALE 
results of sensor node positioning using the KF-MLP-
DVRSSI approach, compared to other algorithms [4, 14], 
called ILS DV-HOP, and DV-HOP. 

It can be observed that all algorithms perform poorly 
initially but improve as the ratio of anchors increases. The 
precision of all algorithms enhances with addition of more 
anchor nodes. The ALE of KF-MLP-DVRSSI is the 
lowest. 

Fig. 10. demonstrates the results of varying the number 
of unknown nodes, as given in Table I, keeping the number 
of anchor nodes and R constant. The results show that the 
accuracy improves with increasing node density as the 
connectivity increases due to a larger number of 
neighboring nodes. Conversely, higher node density leads 
to higher energy consumption due to more active nodes 
and higher processing requirements. The proposed 
algorithm reduces the ALE of the original DV-HOP 
algorithm at density = 200 by up to 94% and compared 
to [4] and ILS DV-HOP by 81 % and 93%, respectively. 
On the other hand, the ALE of KF-MLP-DVRSSI with 
100 unknown nodes closely resembles the ALE with 300 
unknown nodes reported in [4].

Algorithm Scenario1 (ALE versus anchor 
nodes ratio)  Scenario 2(ALE versus density) Scenario 3 (ALE versus 

communication ranges) 

Dv-hop 300 unknown nodes, R = 20 m, anchor 
nodes ratio varies from 10% to 30%. 

Anchor nodes ratio= 10%, R= 20 m, unknown 
nodes varies from 100 to 300  

300 unknown nodes, anchor node ratio 
= 10%, and R varies from 15 m to 30 m 

Journal of Communications, Vol. 19, No. 9, 2024

455

TABLE II. VALUES OF PARAMETERS THROUGH ALL SCENARIOS 



ILS DV-HOP 300 unknown nodes, R = 15 m, anchor 
nodes ratio varies from 5% to 30%. 

Anchor nodes ratio = 10%, R = 15 m the 
number of unknown nodes varies from 200 to 
500  

300 unknown nodes, anchor node ratio 
= 10%, and R varies from 15 m to 40 m 

[4] 100 unknown nodes, R = 20 m, anchor 
nodes ratio varies from 10% to 40%. 

Anchor nodes ratio = 20%, R = 20 m the 
number of unknown nodes varies from 100 to 
300  

100 unknown nodes, anchor node ratio 
= 20%, and R varies from 20 m to 40 m 

KF-MLP-
DVRSSI 

300 unknown nodes, R = 20 m, and the 
anchor nodes ratio varies from 10% to 
30%. 

Anchor nodes ratio = 10%, R = 20 m the 
number of unknown nodes varies from 100 to 
300  

300 unknown nodes, anchor node ratio 
= 10%, and R varies from 15 m to 30 m 

 

 
Fig. 9. ALE versus anchor nodes ratio. 

 
Fig. 10. ALE versus density. 

 
Fig. 11. ALE versus communication range. 

However, the results of the DV-HOP algorithm have 
higher energy consumption and processing requirements 
due to the higher node density. 

Fig. 11 shows the influence of increasing R on the ALE 
with a constant number of unknown and anchor nodes as 
shown in Table II. However, the decline in ALE is coupled 
with greater communication latency due to the higher 
communication range and propagation distance. For 
example, the ALE achieved by KF-MLP-DVRSSI with R 
= 15 is lower than the ALE of ILS DV-Hop with R = 30, 
KF-MLP-DVRSSI has lower latency than the original 
DV-HOP and other algorithms. 

The comparison between the proposed algorithm and 
the algorithm in [31] is critical, since the proposed 
algorithm adds MLP to the integration of Ref. [31] to 
mitigate the effects of nonlinearity and multimodality in 
indoor environments. For example, in a density scenario 
with a high density of 300 nodes [31], the improvement of 
DV-HOP is up to 53.8%, while the improvement of the 
proposed algorithm is 98 %. 

VI. CONCLUSION  

The DV-Hop model, with its simplicity, scalability, and 
cost-effectiveness, is a valuable technique for WSNs. 
However, its accuracy limitations can be overcome by 
integrating AI techniques. These techniques can learn 
complex relationships between hop counts, RSSI values, 
average hop distance, and actual distances, thereby 
enhancing the DV-Hop model’s accuracy. 

This paper presents a novel KF-MLP- DVRSSI 
algorithm to address the localization in IoT-WSN. The 
KF-MLP- DVRSSI is an ANN-based algorithm 
introduced to improve localization in IoT-WSN. The KF-
MLP-DVRSSI algorithm uses a combination of distance, 
average RSSI values and hop counts to determine the 
location of an object. Integrating Kalman filter, DV-HOP 
algorithm and RSSI with AI improves accuracy without 
the need to add new hardware.  

The proposed algorithm is designed for precise 
localization, that enhanced the accuracy of the original 
DV-HOP algorithm by up to 94% and compared to [4] and 
ILS DV-HOP 87 % and 89%, respectively. This ensures 
both longer network lifetime and high localization 
accuracy which is crucial for WSN. The simulation results 
show a significant performance improvement of the 
proposed multihop based algorithm over the DV-HOP 
algorithm and the single hop based RSSI algorithm. In 
addition, the results demonstrate energy-efficient model 
with reduced latency. 

VII. LIMITATIONS AND FUTURE WORK 

In future work, we will perform the necessary tests to 
validate the effectiveness of the proposed algorithm in real 
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indoor environments. The mobility scenario will be 
investigated to determine the location. 
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