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Abstract— Wireless networks are a growing technology due 
to its ability to receive data in areas where it is very hard to 
plug-in using wires. TCP Reno assumes in his congestion 
algorithms that the packet loss is the major cause of 
network congestion. In wireless networks, this is not correct 
because having a high bit error rate leads also to a packet 
loss. Link layer approach is one of the most efficient 
proposed solutions to maintain TCP over wireless networks. 
For example, having hybrid ARQ type 1 with Fano 
decoding, which is an error correction technique, is very 
appropriate and is of concern in wireless networks due to its 
capability of offering decoding steps, which are dependent 
to the channel state. In this paper, we propose a novel 
queuing model to see the effect of employing Fano decoding 
on the buffer of wireless access or end points since it is a 
very effective network parameter and cannot be neglected.  
Our queuing model is concerned not only about those 
departed packets after being decoded using Fano algorithm, 
but also the way packets arrive to the wireless access or end 
point systems. An analytical study has been conducted to 
derive a general form expression for the average number of 
packets residing in the system’s buffer.  On the other hand, 
a simulation study using programming language has been 
performed to validate our analytical results.  
 
Index Terms— Expected queue size, Fano decoding, partial 
decoding, queuing analysis and simulation, TCP 
performance.  

I.  INTRODUCTION 

Wireless networks have become very popular 
nowadays for a lot of reasons, most importantly the 
flexibility to set up a network where it is difficult using 
wired networks.  TCP (transmission control protocol) is 
the main protocol to deliver the service with 
completeness, no errors, and fast delivery enhancements. 
It was originally designed for wired networks.  TCP Reno 
is the typical congestion control mechanism that is 
implemented by end hosts.  TCP congestion schemes 
limit the connection throughput by interpreting the loss of 
the packet as an indication of congestion [1], [2]. This is 
correct for wired networks where the transmission media 
is noiseless, but in wireless networks the media is noisy 
by nature [3].  Even low BER (bit-error-rate) may 
generate packet loss as a result of DUP ACKs (duplicate 
acknowledgments) and timeout.  Consequently, the 

sender, which is not wireless-aware, shrinks its 
congestion window due to a congestion mark 
understanding.  Hence, multiple corrupted packets may 
decrease the sending rate of the TCP sender dramatically.  

 
The following are the major approaches that have been 

done to improve TCP over wireless networks [4]: Split 
mode, Snoop protocol, and link layer.  In the split mode, 
there are two separate TCP streams. In this approach, a 
certain packet may be acknowledged by the access point 
without reaching its destination. This violates the 
semantic of TCP as being an end-to-end scheme [2].  This 
further leads to extra overhead for wireless access points 
by adding a new layer (i.e., transport layer) to manage 
that. In snooping protocol, the idea of ELN (explicit loss 
notification) has been introduced [5]. This is done by 
activating an ELN flag in the TCP header to distinguish 
DUP ACKs received by sender. It is set when these DUP 
ACKs come as a result of a noisy environment. In this 
case, the congestion algorithms will not be invoked and 
the congestion window will be kept large. It works 
efficiently only when the error rate is low [6].  Moreover, 
it has a limitation of possibly false notification, especially 
when there are multiple packets lost in a window [6]. In 
the last approach, a set of algorithms have been 
associated with ARQ (automatic repeat request) (i.e., 
hybrid ARQ of type 1) to enhance the TCP performance 
over wireless networks through the MAC (media access 
control) sub-layer of wireless access and end points and 
most importantly the convolutional decoding algorithms 
[4]. These decoding algorithms are considered error 
detection and correction algorithms and are of interest in 
wireless networks much more than the CRC (cyclic 
redundancy check) error detection technique. In this 
paper, we investigate the last approach from a queuing 
point of view. In other words, we study the effect of 
employing decoding algorithms on the buffer of access or 
end points since it is a very important network parameter 
and may affect the network performance badly if it is not 
taken into consideration.   
 

Convolutional codes are a category of channel coding 
that are described by adding extra bits to the original data 
for bit flipping prevention over a noisy channel [7].  A 
convolutional coder includes L-stage shift register and x 
codeword blocks modulo-2 adders [8]. Hence, it has a 
constraint length of L. There are two important decoding 
(error detection and correction) algorithms for 
convolutional codes, the maximum-likehood decoding 
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(Viterbi's algorithm) and sequential decoding [8]. These 
algorithms increase the ratio of good packets to the total 
number of received packets. Moreover, they may 
decrease overall message latency since correcting 
corrupted packets helps to reduce the number of 
retransmissions and accordingly network congestion. 
Consequently, the TCP performance over wireless 
networks is improved. Convolutional coding with Viterbi 
decoding is very popular and is considered the 
predominant FEC (forward error correction) technique 
that is widely employed in satellite and mobile 
communications [8], [9].  It is characterized by affording 
a fixed decoding time. Therefore, it is unable to provide 
faster decoding for a received codeword sequence that 
ontains fewer errors.   c

 
Fano decoding was developed by Fano [9] and came 

as an efficiency improvement to a sequential decoding 
algorithm that was developed by Wozencraft [9]. Fano 
algorithm has advantages over Viterbi decoding 
algorithm because it is operated at a variable decoding 
rate and has computational and storage requirements that 
grow linearly as a function of the constraint length rather 
than exponentially as the case of Viterbi decoding [10]. 
Moreover, it has been proven that under high SNR 
(signal-to-noise ratio), the Fano decoding consumes less 
power than the Viterbi algorithm [11]. Actually, the 
complexity of Fano algorithm becomes dependent on the 
channel state (noisy or pure) [10], [12], and [13]. The 
brief description of this algorithm is as follows [10]: 
Once the codeword sequence is received by the decoder, 
a comparison is made with the codeword allowed by the 
decoder according to the encoder state diagram. Each 
codeword sequence is divided into groups where each 
group consists of m digits. Fano algorithm works in a way 
similar to the code tree. It chooses the path for which the 
sequence group has the shortest hamming distance (i.e., 
difference in bits between encoder output and the 
received sequence group is minimum).  This process is 
repeated until groups end. If a lot of errors appear through 
this process then it becomes impossible to have a match 
for the received sequence.  This is an indication that the 
wrong path is chosen. Thus, back and forth steps have to 
be done to avoid getting an accumulatively high number 
of errors.  

 
It is well known that every intermediate hop has a 

buffer to absorb the variable packet processing rate. In 
this paper, we propose a new queuing model that 
describes packet arrivals and departures of a wireless 
system uses Fano decoding. The maximum decoding time 
has to be variable since it depends on how high the 
percentage of errors is. In our queuing model, the decoder 
is described as having not only an upper variable 
decoding limit (T), but also a lower variable decoding 
limit (K). The minimum decoding time of Fano decoding 
is also variable (i.e., not constant) since it depends on 
how low the percentage of errors is. We consider in our 
queuing model that the channel state is also variable. 
Having a Fano decoder with upper and lower operating 
decoding limits that are variable and adaptive with the 

channel state is very efficient and suitable for noisy 
media such as wireless networks. Furthermore, it gives 
generality for our system in terms of queuing theory. Our 
major aim of this queuing model is to find a closed form 
expression of the average number of packets waiting in 
the system’s buffer. The system is assumed to be of 
infinite capacity. Hence, it becomes very necessary to 
find the average number of packets in the buffer waiting 
to be served so that it can be selected as a value to be 
operated on. It is clear that the value of system capacity 
(buffer size) cannot be chosen randomly since choosing 
too large or too small may degrade the performance of 
the system significantly.  The average packet waiting 
time increases when the system capacity gets large. Thus, 
many retransmissions may occur due to a timeout limit 
from the sender side although there is no packet loss.  On 
the other hand, many retransmissions may occur due to 
packets being discarded because of small system 
capacity. Hence, choosing a suitable buffer size may also 
improve TCP performance over wireless networks. Our 
queuing model works with not only Fano decoding, but 
also any other decoding algorithm of variable complexity 
such as Low-density parity-check and Turbo decoders. 
We also provide an expression of the maximum possible 
packet arriving probability in order to keep the decoder’s 
buffer stable, which then is verified through the results of 
our general form expression of the average buffer size. 
Moreover, we simulate our proposed queuing model 
using Matlab programming to validate our analytical 
observations and results. To the best of our knowledge, 
our queuing model, analysis, simulation, and results are 
completely new and there is no similar work to ours. 

II.  ANAYTICAL STUDY 

In our analytical study, we provides details about the   
system model, system assumptions and probability state 
transitions, system steady-state transition probabilities, 
and system analysis that are very helpful to recognize our 
proposed general form expression for the average queue 
size.  

A.  System Model 
 

To model the system (decoder and queue), a discrete-
time Markov chain is used. A Markov chain is a 
stochastic process [14] (bunch of random variables) with 
a very limited memory [14]. However, in our model, the 
time is portioned into equal time slots where at least a 
packet is allowed to arrive in any arbitrary time slot. 
Hence, Bernoulli process is the best to describe arriving 
packets. The arriving probability arrives with probability 

)(λ  and does not with probability ).1( λ−  The decoder 
can start decoding a packet after its arrival immediately 
on the succeeding slot if there are no packets waiting in 
the queue. Since Fano algorithm offers variable decoding 
time which is dependent to the channel state, Pareto 
distribution, which is a heavy-tailed distribution, is 
considered to be the best to describe the decoding time 
[15]-[17]. In this distribution, there is a parameter called 

).(β  When the value of this parameter gets high, the PDF 
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To describe the behavior of Fano decoding using 
queuing theory with high level of generality, the Pareto 
parameter, packet arriving probability, maximum 
decoding limit, and minimum decoding limit should be 
variable. We have already introduced elementary 
analytical results for the average buffer size but for the 
special case where at least four decoding time slots are 
required to finish decoding [24]. In this work, we start 
first by assuming that packets need at least two decoding 
time slots to finish decoding (i.e., minimum decoding 
limit) as shown in (1) and (3). Consequently, we become 
able to generalize our close form expression for the 
average buffer size to be a function of upper variable 
decoding limit (T), channel condition , packet arriving 
probability

)(β
)(λ  in addition to lower variable decoding 

limit (K), which is presented in subsection  E. We present 
in this work to the extent level details of how to reach 
that general form.  It is important to state that the number 
of state probabilities increases when the upper variable 
decoding limit (T) increases (as shown in Fig. 1) while it 
is not the case for lower variable decoding limit since it 
has just a relation with 

(probability density function) of Pareto distribution goes 
to zero early. From the decoder side, this means 
dispatching low decoding time. On the other hand, when 

)(β gets low, the PDF goes to zero late. Considering 
decoder side, this implies dispatching high decoding time.  
Hence, we can take advantage of that by connecting 

)(β to the SNR of the channel [12], [18]. Thus, when 
SNR is high, this indicates we have low noise power. 
Therefore, low decoding time is required. We will lose 
the system’s generality if this lower decoding time is 
considered to be fixed as assumed in [19]. However, 
when SNR is low, this implies that the noise power is 
high. Thus, high decoding time is needed. However, once 
a packet reaches that upper bound decoding limit and 
needs more, it is considered to be partially decoded and 
lost which is the same as assumption used in [19]-[21]. 
One way of recovering those packets is to resend them 
during the slots follow immediately getting partial 
decoding [20], [22].        
 
B.  System Assumptions and Probability State Transitions 
 .jμ  Therefore, the step 

transitions always get different when that lower limit is 
changed. 

The states of this discrete-time Markov model are 
represented by (n, j) as employed in [19], [23], where n 
describes the number of packets in the system including 
the packet being decoded, and  j stands for the number of 
slots elapsed in decoding the packet currently in service. 
We assume two major notations to understand the 
probability state transitions shown in Fig. 1. The 
probability that the decoding process is completed in j+1 
slots is referred to and the probability that the 

decoder finishes decoding in j+1 slots given that 
decoding takes more than  j slots is notated as

 
According to our initial assumption saying that any 

packet needs at least two decoding slots, 
                                           (5) .00 =F

.01

1+jc

.jμ Thus, 

the conditional probability is: 

.
)1(

1

j

j
j F

c
−

= +μ                                (1) 

Where  refers to the distribution of decoding time 
and it can be represented as follows: 

jF

 
),(1 rFj jTPF −=                     (2) ,1 Tj ≤≤

Where  is the slot duration and assumed to be 1, T is 
the maximum decoding slots allowed for decoding. 
Hence, 

rT

.
2

}Pr{)(
β−

⎟
⎠
⎞

⎜
⎝
⎛=>=

jjtjPF
                  

(3) 

Note that the decoding time of Fano decoders has the 
Pareto distribution where β  is called the Pareto 
parameter and it is a function of SNR [1], [20] of the 
wireless channel which means that if SNR gets low, then 
the wireless channel gets worse. However,  represents 
the minimum decoding time needed by the decoder to 
decode a packet.  

2

.2,
2

≥=∑
=

jcF
j

i
ij                             (4) 

=F

,)1(1
2

1∏
=

−−=−
j

i
ijF μ .2≥j

jc

⎩
⎨
⎧ ≤≤−

= −

Otherwise.               

TjFF
c jj

j ,0

,2,1

jnp ,

                                           (6) 
It can clearly be shown that, 

                       (7) 

And the probability is given by 

                       (8) 

C.  System Steady-state Transition Equations 
 

All states found in Fig. 1 are neither transient nor null 
recurrent. Thus, stationary (limiting, equilibrium, or 
steady-state) probabilities exist [14].  Let is the 
probability that the decoder has n packets in its queue 
including the packet being decoded which is in the jth slot 
of decoding. Accordingly, the steady-state transition 
equations are given below. 

,)1()1(
1

1
,10,00,0 ∑

−

=

−+−=
T

j
jj ppp λμλ

              
 (9) 

,0,0 =jp
                                   

 (10) 

[ ] ,)1( 0,0

1

1
,2,10,1 pppp

T

j
jjj λλλμ +−+=∑

−

=             
(11)

                      
,pp 0,11,1 )1( λ−=                            (12) 
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(1-λ)

(1-λ)

λp0,0

(1-λ)(1-μ
1 )

p1,T-1
(1-λ)(1-μ

2 )

λμ
1

p1,2

(1-λ)
(1-λ)(1-μ

1 )

p2,T-1

(1-λ)(1-μ
2 )

p1,0

p2,2

p1,1

(1-λ)
(1-λ)(1-μ

1 )

p3,T-1

(1-λ)(1-μ
2 )

p3,1

p2,0

λμ
1

λμ
1

p2,1

p3,0

p3,2

 
 
 

 
,pp jjj 1,11,1 )1)(1( −−−−= μλ            (13) ,12 −≤≤ Tj 

[ ,)1(
1

1
,1,0, ∑

−

=
+−+=

T

j
jnjnjn ppp λλμ ] n,≤2              (14) 

 ,)1( 0,0,11, nnn ppp λλ −+= −                   (15) n,≤2
 

       
[ ] ,ppp jnjnjjn 1,11,1, )1()1( −−−− +−−= λλμ

                                                                                                                                                 

,12,2 −≤≤≤ Tj   n            (16) 

Taking into consideration that the conditional probability 
to finish decoding in T  slots given that at least required 

1−T  slots, which refers to 1−Tμ , is equal to one. 

D.  System Analysis 
 

According to Fig. 1, dependency between states is 
visible.  To solve the problem of discovering intelligent 
way to find the average number of packet in the queue, 
the following generating functions are defined: 

,)()()()(
1

2
100,0 ∑

−

=
+++=

T

j
j zPzPzPpzP .12 −≤≤ Tj   (17) 

Where, 

,)(
1

,∑
∞

=

=
n

n
ini zpzP               (18)       .10 −≤≤ Ti                 

and  is the generating function that denotes for the 
number of packets in the queue waiting to get served.  It 
is important to refer to the well known fact that 

[20], [25]. Thus, we can evaluate the average 
number of packets in the queue by taking the derivative 

)(zP

1) =1(P

 

 

Figure 1: Probability state transitions of decoder’s queue with maximum and minimum decoding limits of T  and  respectively. The summation of 

outgoing links of all states is equal to one. 

2

of  at )(zP 1=z  [19], [20], [25], and [26]. However, 
referring to (18), we can write 

.)(
2

0,0,10 ∑
∞

=

+=
n

n
n zpzpzP                  (19)    

Substituting (11) and (14) for  and  into (19), we 0,1p 0,np

get 
1T∞ − [ ] .)1()( 0,0

1 1
,1,0 zpzppzP

n

n

j
jnjnj λλλμ∑∑

= =
+ +−+=

   
(20)           

After rewriting, we get 

   
(21) .)1()( 0,0

1

1 1
,1

1
,0 zpzppzP n

T

j n
jn

n
jnj λλλμ +⎥

⎦

⎤
⎢
⎣

⎡
−+=∑ ∑∑

−

=

∞

=
+

∞

=

The rightmost summation can be written as 

( .)(1
,1

1
,1 zpzP

z
zp jj

n

n
jn −=∑

∞

=
+ )

                
(22) 

Assuming, 
.1)(  zzf λλ+−=                             (23) 

After finding the term , found at (9), 
 
in 

terms of  and substituting it along with (22) and (23) 
into (21), we find 

∑
−

=

−
1

1
,1)1(

T

j
jj pλμ

0,0p

( ) .1)()()( 0,0

1

1
0 pzzP

z
zfzP j

T

j
j −+= ∑

−

=

λμ
            

(24) 

Applying the fact that ,11 =−Tμ  
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( ) .1)()()()( 0,0

2

1
10 pzzPzP

z
zfzP j

T

j
jT −+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= ∑

−

=
− λμ

    
(25) 

For           where j=1  we have, 

.)(
2
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n
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0,0,1
2
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=
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n
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1
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n

n
jnj

n
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∑

∑
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∞

=
−−

−+
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μλ
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).()()1()( 11 zPzfzP jjj −−−=

∞
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(26) 

Substituting (12) and (15) into (26) yields 
[ ] .)1()1()(

2
0,0,10,11 ∑

∞

=
− −++−=

n

n
nn zppzpzP λλλ

   
(27) 

We can rewrite (27) as follows 

        
(28) 

The leftmost summation can be simplified as 

        (29) 

Hence, 

                         (30) 
Deriving an expression for j>1, 

.)(
2

,,1 ∑
∞

=

+=
n

n
jnjj zpzpzP

                 
(31) 

Substituting (13) and (16) into (31) gives 

.         
(32) 

After rearranging, we get 

                
(33)

 

 Utilizing the same principle used in (22) and (29), we get 
 

μ         (34) 
 
 
Applying (7), we recursively get 

).()()1()( 0 zPzfFzP j
jj −=                   (35)   

Substituting (35) into (24) and applying (1) yields 

.)1()()()( 0,000 pzzP
z
zqzP −+= λ
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1

2

1
1
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T

j
T

j
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 Where,   

    
(37)

 
Finally, we get 

.)(
)(
)1()( 0,00,00 pzyp

zqz
zzzP =

−
−

=
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(38) 

After substituting (30), (35), and (38) into (17), we get 
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We can get the value of after applying the fact 
that

0,0p
1)1( =P on (17). Hence, we get 

,1
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Where, 

,
)(
)1(lim)1(

1 zqz
zzy

z −
−

=
→

λ

                        
(41) 

Substituting z=1 into (23) and (37), and considering (4), 
we get 

,1)1( =q                                  (42)
 Hence, 

,

)()1()()1(1

)12(lim)1(
2

1

1
11

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++−

−
=

∑
−

=

−
−+

→ T

j

T
T

j
j

z
zfFTzfcj

zy

λ

λ

                               

(43) 
After applying L’Hospital's law just once, we conclude 

,
1

)1(
λτ
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,)1()1(
2

1
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−
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Where, 

       
(45)

 
Thus, after substituting (44) into (40), we finally 
conclude
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Where,
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1
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−

=
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T
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(47) 

The average number of packets in the decoder’s queue is 
found by taking the derivative of (39) and then 
substituting for =z
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After taking the derivative of  found at (38), we get 

,
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By using L’Hospital's law twice, we get 
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Taking the derivative of (37) and then substituting for 
z=1 when using (23)

(50) 

           
(51)

 

)(zPj
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Also for the second derivative when applying further the 
fact that                                  0)( =′′ zf

Finding )1(P′  from (57), we get the general expression 
for the average buffer size with complete variable 
parameters,  
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 Hence, we finally get Where, 
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Substituting (44), (46), and (53) into (48) leads to the 
final expression of the average number of packets in the 
buffer  
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And, 

E.  Average Buffer Size with Variable Lower Bound 
Decoding Limit 
 

Due to the nature of wireless links of being 
uncontrollable and noisy (i.e., high BER) because of 
many different conditions such as multipath interference, 
urban obstacles, mobility of wireless end points, large 
moving objects, as well as weather conditions, it becomes 
interesting to derive further a new general form of 
average number of packets in the buffer of a decoder that 
is also bounded by variable K  which denotes to 
minimum decoding limit. With refereeing to our analysis 
in subsection D (where K=2) and our previous analysis 
[24] (for K=4), we conclude that (39) will be modified to 
include any value of K as follows, 
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The term will be just associated with  when 

 (for details, see how to derive (35)). When 
applying the fact that , we can get after updating 
(40) according to our previous modified equation (i.e., 
(57)) the following, 
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Moreover, 
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III.  ANAYTICAL RESULTS 

Fig. 2 shows the effect of operating different upper 
bound decoding limits, packet arriving probabilities, as 
well as channel conditions on the buffer size when 
working on a value of two for lower bound decoding 
limit (notice the semilogy shape adapted). However, the 
increase in the average number of packets, when packet 
arriving probability increases, is noticed. This can be 
explained by more arriving packets than the buffer can 
serve.  The upper bound decoding limit has a noticed 
impact on the average number of packets in the buffer. 
Once this limit becomes larger, the number of packets 
waiting for decoding gets also larger. For example, the 
average buffer size, when λ  is 528.3, 5.43, and 
1.324 for T ,60,90  = and respectively (given30 ).6.0=β   
When comparing plots (a) with (b), the effect of changing 
the channel condition is shown. The decrease 
in

)(β
β means the channel gets worse. Thus, higher decoding 

time is needed. Consequently, all packets may reach the 
upper bound decoding limits and this leads to increase in 
the average number of packets waiting in the buffer.  As 
values selected from Fig. 2 to verify that, the average 
buffer size, when ,2084.0=λ  is 333 and 5.622 for 

2.β 0=  and respectively (given .  60. )5=T
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Figure 2: Average number of packets in the buffer versus packet arriving probability  for different T and)(λ . .6.0= .2.0=β   (a)  β  (b)  β  
 

Figs. 3 and 4 show the average number of packets in 
the decoder’s buffer for different lower bound decoding 
limit , upper bound decoding limit , channel 
condition 

)(K )(T
),(β and packet arriving probability ).(λ Our 

major goal is to see the effect of changing K on the 
average buffer size for different values of , , λT and .β  
The increase in the average buffer size is clearly seen as 
long as increases for fixed values of K , , λT and .β   This 
is expected since increasing  leads to having more 
packets in the buffer waiting for service. The decrease 
in

K

β  as seen in Fig. 3 causes a noticed increase in the 
average buffer size for all values of . Table I provides 
values for the average buffer size when choosing 
different values of 

K

λ  to be compared in both subplots of 
Fig. 3 under different  As a summary, the average 
buffer size increases for any value of when

.K
K β decreases. 

In Fig. 4, the effect of decreasing T which leads to a 
decrease in the average buffer size is noticed when 
compared to Fig. 3 for the same values of , , λK and .β  
Table I also presents values for the average buffer size for 
different values of T (60 and 15). For fixed values of 
λ and β , the average buffer size decreases as 
T decreases for all values of .  K
 

There is one more observation is shown in Table I 
(also can be extracted from Figs. 3 and 4). The value of 
average buffer size is 365.3 when )7.1,60( == β T  and 
6.304 when )7.1,15( == β T  while the value of average 
buffer size is 1.744 when ( )7.2,60 == β T and 1.591 
when ).7.2,15 ==( β T

19330
 Does that mean, for 

.0=λ and , we should employ a buffer size 
near 7 for 

2=K
7.1=β  and 2 for 7.2=β  regardless of the 

value of The answer is yes for the case of ?T 7.2=β  but 
is no for .7.1=β  It is yes because there is no much 
difference obtained in the average buffer size and this is a  
good indication that the channel is not so noisy because 

of relatively high value of β .  For the other part of the 
answer, which is no, and that is because if we select 7 
when T=60, then many packets will get partially decoded 
and accordingly will be considered to be lost and need to 
be retransmitted since the buffer size is too small. This is 
an indication that the channel becomes so noisy since β  
is low. Thus, we can summarize that the value of 
T becomes less sensitive to the change of average buffer 
size when β  gets larger.  
 

It is shown from Figs. 2, 3, and 4 that the average 
number of packets goes to infinity after reaching certain 
limit of packet arriving probability ( . max )λ  The increment 
chosen for λ  in Figs. 2, 3, and 4 is 0.00001 just to be able 
to find exactly the value of .maxλ  Table II provides these 
limits for Figs. 3 and 4. As shown in this table, maxλ is 
decreased when  increases for fixed values of K T and .β  
On the other hand, maxλ increases as T  decreases for 
fixed values of  and .K β  Lastly, maxλ increases when 
channel condition gets better for fixed values of T and 

 .
 

K

One important comment about the values of ,maxλ  
when 15=T and ,12=K which are 0.06829 and 0.06913 
for β =1.7 and β =2.7 respectively. These values are the 
closest pair found in Table II. Does that mean that the 
values of the average buffer size around these values of 

maxλ do not differ much? We would like to state that 
although these values seems to be close to each other, it is 
necessary to know that when maxλ  gets low, the average 
buffer size will differ with just a small increase of packet 
arriving probability )(λ . For example, when 

06826.0=λ (a bit lower than maxλ  for both cases), the 
average buffer size is about 897.7 and 37.1 for β =1.7 and 
β =2.7 respectively. 
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Figure 3: Average number of packets in the buffer versus packet arriving probability including fixed and different working and  60=T K β.
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Figure 4: Average number of packets in the buffer versus packet arriving probability including fixed and different working and  15=T K β.

TABLE I.  AVERAGE NUMBER OF PACKETS IN THE BUFFER FOR VARIOUS SYSTEM PARAMETERS.  

 60T == ,7.1β  60T == ,7.2β  5,7.1 1T ==β  5,7.2 1T ==β  
Packet arriving 
probability )(λ  

Lower bound decoding 
limit  )(K

Average buffer size Average buffer size Average buffer size Average buffer size 

0.19330 2 365.3 1.744 6.304 1.591 
0.10640 4 799.2 1.899 3.242 1.547 
0.05813 8 196.3 2.186 1.616 1.318 
0.04151 12 611.2 2.551 1.048 1.022 

                                                     TABLE II.   UPPER LIMIT OF PACKET ARRIVING PROBABILITY ( ) maxλ  FOR VARIOUS SYSTEM PARAMETERS. 

 60T == ,7.1β  60T == ,7.2β  5,7.1 1T ==β  5,7.2 1T ==β  
Lower bound decoding limit  )(K maxλ  maxλ  maxλ  maxλ  

2 0.19380 0.26470 0.21220 0.26730 
4 0.10650 0.14530 0.12610 0.15050 
8 0.05834 0.07646 0.08057 0.08678 

12 0.04155 0.05232 0.06829 0.06913 
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Figure 5: Maximum allowable packet arriving probability versus lower bound decoding limit (K) for different values of T  and  .β

 
To illustrate the case of existing ,maxλ we can refer to 

load or system utilization which is defined in general [25] 
as the result of multiplying packet arrival rate with packet 
service rate for any system (server with its buffer). Also it 
is very important that the result of this product should be 
less than or equal to one in order to keep the buffer stable 
[14], [25]. In our proposed model, the system utilization 
is the packet arriving probability times the average 
decoding time, which is .λτ Hence, we conclude that 
there is maxλ  which equals to  for system stability. 
Consequently, when 

)/1 τ
,
(

maxλλ > then the average queue 
size will go to infinity and this is what happens in Figs. 2, 
3, and 4. The expression for average decoding time )(τ is 
found at (61). 
 

Fig. 5 shows the maximum allowable packet arriving 
probability in order to preserve the stability of the system 
versus lower bound decoding limits. The decrease in 

maxλ  is noticed when increases. This indicates that the 
buffer gets larger. For a fixed value of and  the 
decrease in

K
K ,T

maxλ is seen as long as β decreases. Also, it is 
shown that maxλ is decreased, for a fixed value of K and 

,β when T  increases. Hence, we can see that there is an 
effect of changing β  and T  on the buffer size by 
getting, as a result, various values of .maxλ Moreover, the 
results just explained of Fig. 5 (a) and (b) totally agree 
with our previous results and explanations about Figs. 2, 
3, and 4. Table III is done to prove that through providing 
real numbers. It can be clearly seen that the results of this 
table, which are taken by applying the expression τ/1 , 
for maxλ  are completely the same as the values found in  
Table II, which are obtained when applying our general 
form for the average buffer size, for maxλ with the same 
selected values of ,β ,K andT  .

TABLE III.   
MAXIMUM ALLOWABLE PACKET ARRIVING PROBABILITY FOR FIXED 

T AND DIFFERENT K AND .  β

60 T ,7.1  60T ,7.2== = =β β  
Lower decoding limit 

 )(K
maxλ maxλ  

2 0.19380 0.26470 
4 0.10650 0.14530 
8 0.05834 0.07646 

12 0.04155 0.05232 

IV.  SIMULATION RESULTS 

The simulation of the previously modeled system is 
done through Matlab. A software-based approach is 
considered in order to validate our analytical 
observations. Throughout the duration of the simulation, 
Bernoulli RNG (random number generator) is invoked to 
simulate packets’ arriving process as well as Pareto RNG 
which is programmed through utilizing the approach of 
inverse cumulative distribution function [27] to simulate 
packets’ decoding time. As soon as a packet is recorded, 
the decoder starts decoding it at the beginning of the next 
time slot if it is not busy. The number of packets in the 
system buffer is managed until the duration of the 
simulation by defining a vector which is updated in every 
time slot where there is a possible packet arrival, a packet 
gets decoding, or both together at the same time slot. 
Consequently, the average number of packets can be 
found. However, Fig. 6 describes the average system 
buffer size obtained through simulation when employing 
different channel conditions, packet arriving probabilities, 
and upper bound decoding limits. The chosen value of 
lower bound decoding limit is the same as used in Fig. 2.  
The simulation time chosen is  time slots.  It is 
important to know that smooth results are obtained when 
choosing larger simulation time. This simulation has been 
run for four days with an increment of 0.01 for

5104x

.λ
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Figure 6: Average number of packets in the buffer versus packet arriving probability  for different upper bound decoding limits and channel 

condition. Simulation time =  (a)  

)(λ

.104 5x .6.0=β  (b)  .2.0=β
  

Actually, the simulation period is dependent on the 
increment selected for .λ  The simulation has been 
performed on Intel Core 2 Duo 3.0 GHZ with a 2MB 
cache and 2 GB RAM. However, it is noticed that the 
average number of packets in the buffer increases as the 
packet arriving probability and the upper bound decoding 
limit increase. It is also seen an increase in the average 
number of packets as channel condition gets worse (i.e., 
β  decreases).  

 
One interesting observation can be made, which is the 

average number of waiting packets in the buffer reaches 
gradually to the working simulation time (i.e., maximum 
number of simulation slots) after being around a certain 
value of packet arriving probability which is mentioned 
in our analytical results as .maxλ  In other words, the 
average buffer size moves gradually towards the duration 
of the simulation around 2.0=λ  for )2.0 ,5( == βT  and 

23.0=λ  for ).6.0= ,5( = βT  Also, it does so before 
1.0=λ  for (T = 30, 60, and 90) when 2.0=β  and  

with considering the notice that a faster move is the case 
when 

6.0

β  decreases. While the case of T=15, the average 
buffer size moves around a limit after 1.0=λ  for 6.0=β  
and before 1.0=λ  for .2.0=β  All of these simulation 
facts agree fairly with those shown in Fig. 2 as a result of 
heory.  t

 
The trend of moving gradually towards the duration of 

the simulation can be explained due to the finite number 
of simulation time slots  where there is a 
maximum one packet that can arrive during any certain 
time slot. Hence, in the best case, a maximum of  
packets is the result.  It is necessary to mention that if we 
increase the duration of the simulation (no matter what is 
the increase), the average buffer size will move gradually 
to that duration also around the mentioned limits of 

)104( 5x

5104x

.λ  

This means reaching to infinity which verifies the same 
trend prescribed in theory as shown in Fig. 2.  

V.  CONCLUSION 

In this paper, a hybrid type 1 ARQ with Fano decoding 
at the MAC layer of wireless access and end points is 
considered as an end-to-end improvement over wireless 
networks. A queuing analysis and simulation study are 
proposed for the system (queue and decoder) of wireless 
access and end points to obtain results about the expected 
number of packets in the system’s buffer when Fano 
decoding or any other variable complexity decoding 
algorithms is implemented. This performance metric 
(average buffer size) has a severe impact on the wireless 
system performance and overall wireless network 
performance when it is chosen randomly. In the 
analytical study we derive a general form expression for 
the average size of the buffer that belongs to the Fano 
decoder, which is bounded by maximum and minimum 
variable decoding limits ( T and respectively), due to 
the unpredictable and noisy nature of wireless networks. 
This formulated expression is a function of not only 

and  but also 

K

T( ),K β(  and ).λ  Analytical results show 
that the average buffer size increases dramatically when 
channel condition decreases (i.e., gets worse) by 
reaching maxλ which then goes to infinity. The effect of an 
increasing in λ  on the average buffer size becomes less 
when β  increases. Both variables T and become 
highly sensitive to the increase of average buffer size 
when 

K

β decreases. Also, we provide results for a new 
derived form of maxλ that are totally the same as the maxλ  
results obtained through our general form expression of 
the average buffer size.  On the other hand, we provide 
results obtained through simulation for the average buffer 
size. We show that our results and explanations for both 
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