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Abstract—Cellular users in indoor environments have 

difficulty to enjoy high rate services supplied only by macro 

base station (MBS) due to the penetration loss. Smallcell, as a 

complement to Macrocell, provide the enhanced coverage 

through constituting heterogeneous network (HetNet) with 

MSBs. HetNet is an effective candidate for green 

communications. However, the interference in HetNet is still a 

challenging issue. In this paper, we propose an energy-efficient 

subchannel and power allocation scheme (called EEmax) for a 

downlink of Macrocell-Smallcell HetNet. The resource 

allocation to maximize the Energy Efficiency (EE) for all 

Smallcell Base Stations (SBSs) is formulated a non-convex 

optimization problem with the condition of the guaranteed data 

rate and the cross-tier interference constraint. Through an 

equivalent transformation, an iterative algorithm and the closed-

form solution for the optimal power and resource block 

allocation are obtained. Simulation results show that the 

proposed EEmax algorithm ballance the resource efficiency 

both energy and spectrum efficiency. 
 
Index Terms—Convex optimization, energy efficiency, 

resource allocation, smallcell 

 

I. INTRODUCTION 

In a cellular network, more than 60% of voice services 

and more than 90% of data traffic take place indoor [1]. 

Therefore, it is increasingly important to provide better 

indoor coverage for voice, video and other high-speed 

data services for cellular network operator. Therefore, 

Smallcell, which can be used to provide indoor wireless 

network coverage, is becoming more and more widely 

used in daily life. Smallcell has a low coverage, which 

can greatly decrease the distance between user and base 

station. Therefore, the transmission power of user can be 

greatly reduced and the service life of mobile terminal 

can be increased. Smallcells act as a complement to the 

traditional base stations (called Marcocell) in cellular 

systems are becoming a hot research issue in the operator 

and academic field by constituting heterogeneous 

network (HetNet). 

Due to the scarcity of spectrum and the difficulty of 

actualize, spectrum sharing between Smallcell and 
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Macrocell is more reasonable than spectrum division [2]. 

In a spectrum sharing network, cross-tier interference 

between the Smallcell and the Macrocell is an emergency 

and open issue, and it will seriously affect energy 

efficiency. Therefore, improving the energy efficiency 

through resource allocation algorithm in the two-tier 

network is a meaningful and challenging research issue. 

Power allocation has been widely used to maximize 

user’s capacity while alleviating cross-tier interference in 

two-tier networks [3]-[11]. In [3] power control is utilized 

to ensure satisfying SINR for indoor cell edge user. In [4] 

a Stackelberg game based power control is formulated to 

maximize Smallcells’ capacity. A Bargaining 

Cooperative Game (BCG) framework for interference-

aware power coordination and a minimized power 

consumption in HetNets is serperately proposed in [5] 

and [6]. A distributed resource allocation scheme based 

on a potential game and convex optimization is proposed 

in [7] to increase the total capacity of macrocells and 

femtocells. Reference [8] applies the dual decomposition 

method to solve the sum-data-rate maximization problem 

in multi-user Orthogonal Frequency Division Multiple 

Access (OFDMA) system. An energy-efficient resource 

assignment and power allocation in heterogeneous cloud 

radio access networks with Lagrange dual decomposition 

method is proposed in [9]. Authors in [10] propose the 

energy-efficient resource allocation with the 

consideration on QoS and backhaul link constraints in 

multi-cell scenario. In [11] a Lagrangian dual 

decomposition based on power allocation scheme is 

proposed with cross-tier interference mitigation. 

On the other hand, channel allocation is applied to 

suppress the cross-tier interference. Reference [12] 

proposes a downlink scheme of the inter-layer 

interference between macrocells and picocells applying 

CRE (Cell Range Extension) technique to coordinate 

frequency and power resource. However, few works are 

considered focusing on energy-efficiency issue in 

resource allocation for a HetNet with consideration of the 

cross-tier interference. 

In this paper, we focus on an energy-efficient 

subchannel and power allocation scheme for a downlink 

of HetNet. It shows that the proposed algorithm 

outperforms the other algorithms in terms of the energy 

efficiency. The main contributions of the paper are 

summarized as follows: 
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1) In the scenario of HetNet, an energy efficiency 

model for all smallcell base stations (SBSs) is formulated 

as a non-convex optimization EEmax problem with the 

condition of the guaranteed data rate and the cross-tier 

interference constraint. 

2) To solve the proposed non-convex EEmax 

problem, the original optimized model is divided into 

fractional nonlinear programming and transformed into 

an equivalent form which can be solved by iterative 

algorithm. 

3) The closed-form expression of the optimal power 

and resource block allocation problem is derived for each 

iteration with the Lagrangian dual decomposition method. 

4) The efficiency of the proposed EEmax algorithm is 

verified by simulations, and the cost of EE improvement 

is a little bit of spectrum efficiency. 

The rest of this paper is organized as follows. Section 

II introduces the system model and formulates the 

resource allocation problem. In Section III, the non-

convex problem is transformed into an equivalent 

optimization problem. By utilizing the dual 

decomposition method in each iteration, the transformed 

EE maximization problem is solved by an iterative 

algorithm. In Section IV, performance of the proposed 

algorithm is evaluated by simulations. And finally 

concluding remarks regarding of the proposed algorithm 

appear in Section V. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

The system model is as shown in Fig. 1. In this system 

model, we consider a single-cell downlink double layers 

network, which contains a Macro Base Station (MBS) 

and several macro users (MUES). M smallcell base 

stations (SBSs) are randomly distributed in the macrocell. 

Each smallcell base station has N randomly distributed 

smallcell users (SUES). The considered MUES are 

located near SBS but far from the serving MBS. Thus, the 

cross-tier interference from SBS to these MUES must be 

limited for maintaining the quality of service. As the 

coverage of each smallcell is usually not overlapped, 

transmission power is low, and the transmission loss is 

large. The common channel interference between 

smallcells is assumed to be part of the thermal noise. The 

bandwidth of each resource block is B0. The channel gain 

model is independent and identically distributed Rayleigh 

fading. 

MBS

SBS1

MUE1

SUE11

SBS2

SBS3

SUE21

SUE31

MUE2

SUE12

SUE22

SUE32

 
Fig. 1. System model of the two-tier network 

Smallcells’ whole throughput is: 
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where  , , 0,1m n ka  , indicates whether or not the k-th 

RB is assigned to the n-th SUE in the m-th SBS. 
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have 
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where 
, ,m n kP  expresses the transmit power of the m-th 

SBS allocated to the n-th SUE on the k-th RB; MP  

denotes the transmit power of the MBS； 2

, ,

S S

m n kh  is the 

channel gain from the m-th SBS to the n-th SUE on the k-

th RB; 2

, ,

M S

m n kh  indicates the channel gain from the MBS to 

the n-th SUE on the k-th RB in the m-th SBS; 
0N  

expresses the noise power spectrum density. 

The total power consumption  ,P a p  is mainly 

related to the transmit power and circuit power. The total 

power consumption can be obtained by 
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where S

mP  represents the power consumption of the m-th 

SBS. 
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where S

cP  is circuit power consumption. 

Therefore, the energy-efficiency of reference smallcell 

is defined as the ratio of the sum of throughput to the 

total power consumption, of which the unit is bps/W. The 

optimization problem is performed under the following 

constraints. 

Total power constraint: 
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where SPmax  denotes total transmit power constraint of the 

SBS. The data rate requirement 0η  should be guaranteed 

for smallcell users to maintain their performance, which 

requires the following constraint: 
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Set the interference threshold in order to control cross-

tier interference from SBS to the MUE which is nearest 

to SBS in the marcocell. 

 2
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Our target is to maximize the energy-efficiency of SBS 

under the cross-tier interference constraint and smallcell 

users’ data rate constraint. The corresponding problem 

can be formulated as the following non-convex 

optimization problem: 
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The constraint condition C1 indicates the RB 

allocation limit, which can only be assigned to at most 

one smallcell user at a time. C2 indicates the minimum 

data rate requirements for each SUE. C3 sets the 

interference threshold in order to control cross-tier 

interference from macro users close enough to the 

smallcell. 0  represents a cross-tier interference 

threshold, which is derived from the distance between 

MBS and MUE and the requirements of the SINR. C4 

represents the total transmission power constraint of the 

SBS. 

Because the proposed optimization problem (10) is 

non-convex, it’s difficult to solve directly it. Implied by 

[13] and [14], we transform the primal problem into an 

equivalent problem to solve the problem (10) in Section 

III. 

III. SUBCHANNEL AND POWER ALLOCATION ALGORITHM 

EEMAX 

A. Problem Equivalence 

The original problem in (10) can be transformed into 

the following equivalent form: 
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Such equivalence has been proved [7], [8]. By this 

theorem, for any optimization problem with an objective 

function in fractional form, there exists an equivalent 

objective function in subtractive form: 

      
( , )
max , ,

a p
F C a p P a p    (13) 

where the (12) is equivalent to find the root of the 

nonlinear equation   0F   . 

Due to the integer variable knma ,, , the feasible domain 

of a  is a discrete and finite set consisting of all possible 

RB allocation schemes. Thus,  F  is generally a 

continuous but non-differentiable function with respect to 

 . Besides, it is clear that  F  is a convex and strictly 

decreasing function with respect to  . It is obvious that 

 yields   0F   and   0F   with   . It 

can be shown that  F  will converge to zero when the 

number of iteration is large enough. 

B. Lagrange-Dual-Method-Based Resource Allocation 

Solve the non-convex problem by Lagrange dual 

decomposition method. The dual optimization problem is 

as follows: 
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where nmu , , k  and mv are the dual variables for the 

constraints C2, C3 and C4, respectively. Assuming the k-

th RB in the m-th SBS is assigned to n-th user, then 

1,, knma . Right now: 
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where  , , ,m n k m n k mL P u v expresses the Lagrange function 

of the original problem with constraint conditions C2, C3 

and C4. 

In addition, through literature [8] the dual optimization 

problem often is convex, and the dual gap is almost 0 

when the number of resources is sufficient for the primal 

problem and dual problem. Therefore, the dual function is 

decomposed into K independent optimization problems, 

which can be given by 
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It is obvious that the above function is convex in knmP ,, . 

With using the KKT condition, the optimal power 

allocation is derived by 
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In this paper, an iterative algorithm for energy-efficient 

resource allocation is proposed to solve the transformed 

problem (11). 

C. Iterative Process Based on Lagrange Dual Method. 

Algorithm Energy-Efficient Resource Allocation 

1) Set the maximum number of iterations maxI , con-

vergence condition r and the initial value  1
 . 

2) Set the iteration index 1i  and begin the iteration. 

3) for max1 Ii   

4)   Solve the resource allocation with  i ; 

5)   Obtain 
 i
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8)    break ; 
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11)   end if 

12) end for 

At the time of the iterative algorithm, the update 

equation of the Lagrange factor at the 1l th iteration is 

as follows: 
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where 1
,
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nmu , 1 l
k and 1 l

mv denote the gradient utilized 

in the 1l th iteration[15]. 1l

u
 , 1l

  and 1l
v  are the 

positive step sizes. Among them, the expression of the 

Lagrange factor gradient is as follows: 
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where 
, ,

l

m n ka  and l
knmP ,, represent the RB allocation and 

power allocation derived by the dual variables of the l -th 

iteration. 

Therefore, the power and resource block for maximize 

EE can be obtained by the above algorithm, called 

EEmax. 

 

IV. SIMULATION RESULTS AND DISCUSSION 

Simulation results are given in this section to evaluate 

the performance of the proposed energy-efficient 

resource allocation algorithm. In the simulations, 

spectrum-sharing smallcells are randomly distributed in 

the macrocell coverage area, and smallcell users are 

randomly distributed in the coverage area of their serving 

smallcells. The simulation parameters are shown in Table 

I. 

TABLE I: THE SIMULATION PARAMETERS 

Parameter Value 

Macro cell radius 500m 

Macro user number 20 

Distance between MBS and MUE Rand(0,500) 

Small cell radius 50m 

SUE number in each small cell 5 

Distance between SBS and SUE Rand(0,50) 

Distance between SBS and MUE Rand(60,120) 

Distance between MBS and SUE Rand(350,420) 

Noise power spectral density N0 -174dBm/Hz 

MBS transmission power PM 45dBm 

System bandwidth B0 4MHz 

Resource block number K 20 

Circuit power consumption PC
S 20dBm 

SUE data probability requirement 
0   60Kbps 

Path loss model SBS-to-UE 31.5+35.0*  
10log
d

  

Path loss model MBS-to-UE 31.5+40.0*  
10log
d

 

 

Fig. 2 shows that the energy efficiency in different al-

gorithms with different number of smallcell users per 

smallcell. We see that the energy efficiency based on our 

proposed EEmax algorithm always outperforms the per-

formance of SDmax algorithm. We can also find that, the 

more the number of users in a smallcell, the better the 

performance can be obtained. This is because, as the 

number of the total subchannels in each smallcell is fixed, 

with the increase of the number of smallcell users in each 

smallcell, each subchannel has more candidate smallcell 

users to select. Therefore, higher energy efficiency can be 

obtained. 

 
Fig. 2. The energy efficiency in different algorithm with different 

number of Smallcell users per Smallcell. 

 

Journal of Communications Vol. 11, No. 5, May 2016

443©2016 Journal of Communications



Fig. 3 shows the energy efficiency in different 

algorithms with different MUE-SINR thresholds. We can 

see that algorithm EEmax outperforms algorithm SDmax 

in terms of energy efficiency. It can also be seen from the 

figure that energy efficiency decreases with increase in 

MUE-SINR threshold. This is because the interference 

constraints restrict the transmit power of SBS in order to 

maintain the MUE’s required SINR. 

 
Fig. 3. The energy efficiency in different algorithm with different MUE-

SINR threshold 

From Fig. 4 we can see that the iterative algorithm can 

converge to the optimal energy efficiency after 5 

iterations. We can also see that when the maximum 

transmission power is low, the energy efficiency we can 

achieve after several iterations is relatively low. At this 

moment the power consumption is mainly consumed in 

the circuit. With increase of the transmission power, 

energy efficiency is improved. 

 
Fig. 4. Energy efficiency (bps/W) versus number of iterations with 

different maximum transmit power of each SBS 

 
Fig. 5. Energy efficiency (bps/W) versus number of iterations with 

different cross-tier interference constraints 

From Fig. 5 we can see that when MUE’s SINR 

threshold is low, SBS can have larger transmission power. 

The energy efficiency can reach its peak value after 

several iterations. When MUE’s required SINR is higher, 

the interference constraints will restrict the transmit 

power of SBS in order to maintain the MUE’s required 

SINR. At present, the energy efficiency of smallcells is 

shown in the picture below. 

Fig. 6 shows that the energy efficiency of the total 

throughput for SD maximum resource allocation 

algorithm improves with the increase of the transmission 

power, but lower than the energy efficiency of the 

maximum resource allocation algorithm. On the other 

hand, the energy efficiency of the maximum resource 

allocation algorithm can reach its peak value with the 

increase of transmission power. 

 
Fig. 6. Energy efficiency (bps/W) versus transmit power of SBS and 

cross-tier interference constraints 

From Fig. 7 we see that the spectrum efficiency based 

on SDmax algorithm always outperforms the 

performance of EEmax algorithm. That is because the 

EEmax algorithm mainly considers maximum energy 

efficiency through reasonably allocating the resource and 

power. Therefore, the EEmax algorithm has some loss in 

the spectrum efficiency. However, it is acceptable when 

considering the enhancement in energy efficiency. 

 
Fig. 7. The spectrum efficiency in different algorithm with different 

number of Smallcell users per Smallcell 

V. CONCLUSIONS 

In a spectrum sharing network, cross-tier interference 

between the Smallcell and the Macrocell is an emergency 

issue and it will seriously affect energy efficiency. 

Improving the energy efficiency through resource 

allocation algorithm in the two-tier network is meaningful. 

In this paper, we focus on subchannel and power 
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allocation scheme for a downlink of Macrocell-Smallcell 

Heterogeneous Network to maximize the energy 

efficiency. With the condition of the guaranteed data rate 

and the cross-tier interference constraint, the subchannel 

and power allocation problem to maximize the energy 

efficiency for all SBSs is formulated as a non-convex 

optimization problem. In order to solve the proposed non-

convex problem, we transformed it into an equivalent 

form of fractional nonlinear programming which can be 

solved by an iterative algorithm. Simulation results show 

that the proposed EEmax algorithm outperforms the other 

algorithms in terms of the energy efficiency. The energy 

efficiency resource allocation with advanced cross-tier 

interference management in HetNet will be a hot research 

direction in the future. 
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