
Fault Tolerance Improvement for Cloud Data Center

Humphrey Emesowum, Athanasios Paraskelidis, and Mo Adda
School of Computing, University of Portsmouth PO1 3HE, United Kingdom

Email: {humphrey.emesowum, athanasios.paraskelidis, mo.adda}@port.ac.uk

Abstract— One of the main research concerns of Data Center

Network designs is the achievement of reasonable throughput

during multiple failures. To design a fault tolerant data center

network that will give operators the operational efficacy they

needed to achieve such reasonable throughput is a hard nut to

crack. In this paper, we proposed an improved version of fat-

tree interconnection to address the issues of fault tolerance. Fat-

Tree is a well-known architecture widely used in data center

networks due to its congestion control and fault tolerance

capabilities attributable to its availability of alternative paths

from source to destination. Our focus is on cloud data center for

client to server communications, thus Email and FTP

applications were run separately on all the designs. Using the

same number of servers and switches, we proved that our

proposed Hybrid and Reversed Hybrid designs outperformed

Fat-tree topology designs at multiple failures. The results show

an improvement on fault tolerance capability, and cost-

effectiveness for cloud data center.

Index Terms—Fat-Tree, fault tolerance, cloud data center,

graceful performance degradation, reversed hybrid

I. INTRODUCTION

In this era of cloud computing with a lot of internet-

based services, as well as big data and internet of things

being stored and retrieved from data center network; it is

pertinent to examine the fault tolerance capabilities of

cloud data center networks so that the right choice of

topology can be made during deployment. It is also

worthwhile to bear in mind that for performance,

reliability, and availability to increase in data center

network, fault tolerance is an essential and unavoidable

requirement; so that even during failure there will still be

available paths for packet transfer [1]. Liu et al. pointed

out that one of the undoubtable features of data center is

that they are prone to failures, which is because of many

switches, servers, and links [2].

These observations agree with the assertion by [3]-[5]

that since failure in data center infrastructure is inevitable,

the network design must be in such a way that any

common failure that occurs must be recovered from

immediately, while adequate performance must also be

maintained amidst such failure. Furthermore, in line with

the need for communication growth and increase in

traffics in cloud data center networks, new architectures

need to be designed. And because these architectures

Manuscript received March 30, 2017; revised July 7, 2017.

Corresponding author email: humphrey.emesowum@port.ac.uk.
doi:10.12720/jcm.12.7.412-418

contribute majorly in data center design - as a backbone,

it is therefore needful to be very careful in the design

consideration [6].
In view of this, and to work around abovementioned

challenges, Fat Tree topology, which originates from

fixed topology has been in use to design a data center

network [2]. This is due to its ability to improve fault

tolerance and congestion control because of its multi-

paths from source to destination [7]-[9]. However, the

conventional Fat tree has been known for lacking

scalability, has a single point of failure and

unmanageably high switch ports towards the root of the

topology [10], [11]. Therefore, the extended generalized

fat trees came into existence through Ohring et al., used

for different performance requirements because it allows

variable number of switch ports to be used at different

levels of the network [10], [12]-[13]. Our work is derived

from that of the authors in [14], called Zoned-Fat tree (Z-

Fat tree,). An extension of Fat-Trees providing extra

degree of connectivity to utilize the extra ports per

switches that are in some cases, not utilized by the

architectural constraints of other variants of fat trees.

Based on this, we have proposed bespoke hybrid designs

of Fat-tree for the improvement of cloud data center

networks that will tolerate fault, lessen congestion, and

guarantee a graceful degradation of performance during

multiple failures.

Subsequently, in Section 2, we succinctly looked at

some related works to improve data center performance;

Section 3 detailed the model design and description;

Section 4 is where the simulation results for Email and

FTP applications on different topologies are analyzed,

compared, and contrasted. In the last Section, 5, we drew

conclusion based the fault tolerance capability of each

design, which is visible from the throughput performance

under multiple failures.

II. RELATED WORKS

Due to the economies of scale in the trend of cloud

computing because of the growth in internet

communication, increase in traffics, emergence of

internet of things (IoT) and big data transfer; many

researchers now focus on robust ways to improve on the

cloud data center networks for better performance in

terms of congestion control, availability, fault tolerance

and reliability.

The authors in [1] acknowledged that for reliability

and availability to increase in data center, fault tolerance

412

Journal of Communications Vol. 12, No. 7, July 2017

©2017 Journal of Communications

is an essential and inevitable requirement. They therefore

proposed the use of fault tolerance mechanism in virtual

data center hosted by physical data center to handle

server failures. They achieved this by relocating the

virtual machines that were hosted in the failed server to

another server. By doing this they recovered all fault and

server utilization by 90%. They also introduced a load

balancing scheme to the network by using clustering to

efficiently allocate the virtual data center on the physical

data center. By so doing the impact of server failure in

virtual data center was reduced by allocating virtual data

center across the physical data center network. Although

their work aimed at improving the fault tolerance of data

center, but it is only based on server failure; also

processing time for the relocation of the virtual machine

during failure is time consuming and might disrupt the

reliability sought for. Meanwhile our work is targeted at

the commonest communication failure in data center,

which are switches and links failures; and our designs

improve the fault tolerance capability of the network in

real time.

and failure recovery mechanisms to help the evenly

distribution of traffic, failure recovery, enable reliable

data delivery in the presence of link failures and reduce

operational costs of data centers. This architecture

comprises: a precomputed multipath routing that ensures

continuous connectivity in the event of failure; path-level

failure detection that detects and recovers failures

performed by the ingress router, though it does not learn a

failed link only a path failure; and local adaptation to path

failures for traffic rebalancing on the healthy paths upon

path failure detection on the network. However, the

shortcomings of this proposal give our work an edge over

it; such as the inability to proactively detect a faulty

device, even as the path detection is after failure has

occurred. This will cause tremendous delay when

transferring from the failed path to the pre-computed

alternate paths, which may cause traffic disruptions in

data center. Nevertheless, our hybrid designs are cost

effective because we used same amount of resources of

single topology for our hybrid topology and in some

cases with fewer links, which helps reduce network

complexity. The traffic disruption encountered in this

proposal [15] caused by delay in transferring traffic from

failed to healthy path is another downtime that our

topologies do not experience, therefore making our work

fault tolerant with a graceful performance degradation for

data center communications.

In a bid to improve the performance of data center

network, the authors in [16] came up with traffic

separation techniques. With this mechanism, they

separated big data network traffic from that of the

ordinary data center traffic because they believed the

network problem of big data centers is that big data

traffic severely affects data center network. This

guarantees that no coexistence of different traffics on the

same path so that transmission journey of the big data

traffic will be short and effective; thereby improving the

traffic congestion in data center network. Well, the

concept is good but they failed to realize that fault

tolerance is the bedrock for reliability and availability in

data center [1]. Therefore, with our robust designs that

encompass fault tolerance, congestion control, and

graceful performance degradation, the issue of traffic

congestion is settled.

Furthermore, there are other interesting new trends in

designing data center network with the use of optical

interconnection based on wavelength division multiplex

links. A typical example is called the Helios architecture

[17], a 2-layer hybrid circuit-based data center network

that uses optical and commodity switches. Its core

switches are either optical circuit switches or electrical

switches, while the top of the rack (ToR) switches are

typical packet switches. For high bandwidth and long-

lived communications, the optical circuit switches are

used between the ToR switches, whereas the electrical

packet switches are used for fast all-to-all communication

between pod switches. However, [18] identified that

although optical interconnection provides low latency,

reduced power, and high capacity data center networks;

but scalability, cost-effectiveness, and fault tolerance are

its greatest challenges. Therefore, with these pros and

cons of the optical interconnects, we could be proud of

our fat tree-based data center designs because they can be

efficiently scaled, cost effective, and fault tolerant.

In a nutshell, to the best of our knowledge, our

proposed designs meet the three properties that make fat

tree as a dominant choice in high performance

interconnect, as stipulated in [19], which are: (i) deadlock

freedom that makes it possible to route packets without

using virtual channels; (ii) inherent fault-tolerance for

easily handling of faults with the existence of multiple

paths from source to destination; and (iii) full bisection

bandwidth, where network sustains full speed

communication between its two halves. And with our

reversed hybrid that has an exact replica of the number of

upward paths in the downward direction, full bisection,

deadlock freedom, and fault tolerance are all achievable.

III. MODEL DESCRIPTION

Fat trees, as discussed in [14], [19]-[22], with the

notation FT(h;m1,m2..,mh;w1,w2..,wh) was defined thus: h

represents switch levels of the tree numbered from 0 at

the bottom. The sequence ml, m2 represent the number of

children each switch at level1 and level2 has respectively;

while wl, w2 represent the number of parent-switches a

host and a switch at levell−1 and level1 has respectively.

To construct our fat tree variants designed for comparing

fault tolerance capability, it is pertinent to start from the

basis, which are the mathematical equations for switch

level relationship, switch connectivity and port mapping.

By default we used full connectivity to connect the

servers at levell-1 to level1 switches for each first zones,

and the numbering of switches and its ports at every level

413

Journal of Communications Vol. 12, No. 7, July 2017

©2017 Journal of Communications

[15]In , Suchara et al proposed a “traffic engineering

are from left to right starting from zero. Where there is no

added extra links, the switch to switch connection is done

by connecting each lower level switch to the quotient of

the divisor (the greatest common divisor (gcd) of Rn+1

and Rn,) and the dividend (Rn+1); which is Rn+1/gcd(Rn+1, Rn).

Meanwhile where extra links are used in the connection,

we introduced the pattern used for Z-Fat tree by the

authors of [14], [20]. The Z-Fat tree describes the number

of root nodes per zone in its semantics and adds a degree

of connectivity as Ƶ (h; z1, z2, …,zh; r1, r2, …,rh; g1,

g2, …,gh). Where h refers to the number of levels, zn

represents the number of zones at level n, rn is the number

of root nodes within each of the zones zn+1, and gn

specifies the degree of explicit connectivity at level n.

Therefore, for our single topology, Fig. 1

Ƶ(2;4,6;4,8,1,1), the sequence r1 =4 and r2 =8 refers to the

number of root nodes inside each of the zones z2 and z3

respectively. The sequence g1=1 and g2=1, indicates there

are no extra connections. But Fig. 2, Ƶ (2;4,6;4,8;1,4)

shows the sequence g1=1 and g2=4, indicates there are

extra connections at level 2.

For the Hybrid FT (H2
+
) designs, the same semantics

used in Z-fat tree is applicable. For example for Fig. 3

H2
+
(2;6,4;2,8;1,1), the sequence r1 =2 and r2 =8 refers to

the number of root nodes inside each of the zones z2 and

z3 respectively. But at levels 1 and 2, r1 and r2 are doubled

because it is a hybrid. The sequence g1=1 and g2=1,

indicates there are no extra connections. In the same

manner, the explanation for Fig. 3 is applicable to Fig. 4

H2+(2;4,6;4,8;1,1) with the sequence r1=4 and r2=8

referring to the number of roots nodes inside each zones

z2 and z3 respectively.

For the Reversed Hybrid FT (H2
-
), Ƶ (h; z1, z2, …,zh; r1,

r2, …,rh; g1, g2, …,gh) still holds, but the topology is

divided into two parts. With the left-hand-side an exact

replica of the right-hand-side in a reversed form, from

level1 and level2. So that Fig. 5, H2
-
(2;6,4;2,8;1,1) shows

that the sequence r1 =2 and r2 =8 refers to the number of

root nodes inside each of the zones z2 and z3 respectively.

The sequence g1=1 and g2=1, indicates there are extra

connections. These sequences stand for each side of the

topology in reversed form, thus it is called a reversed

hybrid.

A. Switch Levels Relationship

Rn+1 = R1 + Δ (n-

Rn+1 represents the sought after number of switches at

the upper level of the network. R1 represents the number

of switches at the level 1 of the topology, which must be

equal to or greater than 2 to avoid single point of failure.

Δ represents common difference between any levels. This

must be constant across the topology. n represents switch

level. This depends on the height of the topology, but for

simplicity, in this paper we use 2 levels for all the

architectures.

For example, Fig. 1 is simply: Rn+1 = R1(4) + Δ(4) (n(2)-

1); this shows that the total number of level 2 switches is

8 since level 1 switch is 4 and a difference of 4.

B. Switch Connectivity

X
n+1

= (R
n+1

((x
n
\R

n
)\Z

n+1
) +

(x

n
%R

n
)* R

n+1
/gcd

(Rn,Rn+1)
 +

k)%

R

n+1.

 (2)

where k represents ϵ {0, 1, …,R
n+1

/gcd(R
n

, R
n+1

)-1}.[16]

X
n+1

 represents the number of switch sought after at the

upper level. R
n+1

represents the total number of switches

at the upper level. x
n

 represents the switch on level n

connecting to upper level switch at X
n+1

.

R

n
represents

the total number of switches on level n connecting to

upper level switches at R
n+1

.

Z

n+1
represents the number

of zones from upper level n
+1.

gcd is an acronym for

Greatest Common Divisor used to get the exact number

of R
n+1

 switches that x
n
 will connect to.

For example, connecting level 1 switch 0 to level 2

switches (in Fig. 1):

Xn+1 = (8((0\4)\6) + (0%4)*2+k)%8

Xn+1 = (0 + 0+k)%8; = (0+k)%8.

where k ϵ {0, 1, …, Rn+1/gcd(Rn, Rn+1)-1}; therefore k =

0,1.

If k = 0, it means that (0+k(0))%8; = 0%8 = 0.

If k = 1, it means that (0+k(1))%8; = 1%8 = 1. Therefore,

switches to be connected to at level 2 are: 0 and 1.

C. Port Mapping

Xp+1 = (((X
n
\R

n
)%Z

n+1
)*R

n
/gcd(R

n
,R

n+1

where p represents ϵ {0, 1, …, R
n
/gcd(R

n
, R

n+1
)-1}. [16],

Xp+1 represents switch ports to be mapped at upper level.

p represents set of R
n+1

switch ports to be mapped with

X
n

To map the first switch’s ports of first zone in level 1

to its corresponding level 2 switch ports. Since Z
n+1

represents number of zones from upper level R
n+1

. Using

Fig. 1 as an example, at level 1, there are 6 zones for Z2

within zone Z3, with r1=4 in each. With 6 zones in level 1,

implies that the down port of each level 2 switch is

divided into 6 zones numbered from 0 to 5. Mapping

level 1 switch 0 in the first zone of Z2 to level 2 switches:

Xp+1 =(((X
n
\R

n
) %Zn+1)* Rn/gcd(Rn , Rn+1)+ p). where p ϵ {0,

1, …, Rn/gcd(Rn , Rn+1)-1} and Xp+1 = upper switch ports.

therefore,

Xp+1 = (((0\4) %6) * 4/4+ p)

414

Journal of Communications Vol. 12, No. 7, July 2017

©2017 Journal of Communications

 (3))+p)

1) (1)

 = ((0 %6) * 1+ p)

 = 0+p and p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1}.

therefore Xp+1 = 0.

Hence, level 1 switch 0 in the first zone of Z2, will be

mapped to ports 0 of level 2 switches where it is being

connected to.

D. Single FTs (Ƶ)

Fig. 1. Ƶ (2;4,6;4,8,1,1). The sequence r1=4 and r2=8, refers to the roots
of the zones z2=6 and z3=1; the sequence g1=g2=1 is the explicit degree

of connectivity.

Fig. 2. Ƶ (2;4,6;4,8;1,4). The sequence r1=4 and r2=8, refers to the roots

of the zones z2=6 and z3=1; the sequence g1=1 and g2=4 is the explicit

degree of connectivity.

E. Hybrid FT (H2
+
)

Fig. 3. H2

+(2;6,4;2,8;1,1). The sequence r1=2 and r2=8, refers to the
roots of the zones z2=4 and z3=1; the sequence g1= and g2=1 is the

explicit degree of connectivity.

Fig. 4. H2

+(2;4,6;4,8;1,1) The sequence r1=4 and r2=8, refers to the

roots of the zones z2=6 and z3=1; the sequence g1=g2=1 is the explicit

degree of connectivity.

This is a hybrid with 64 switches instead of 32 switches like

other topologies

F. Reversed Hybrid FT (H2
-
)

Fig. 5. H2
-(2;6,4;2,8;1,1). The sequence r1=2 and r2=8, refers to the roots

of the zones z2=4 and z3=1; the sequence g1=g2=1 is the explicit degree

of connectivity.

Switch level connectivity and port mapping for the

right-hand side of the topology, is done based on up-

down pattern (from upper to lower level), whereas, the

left-hand-side of the topology is connected and mapped

like the given example that was done in down-up basis

(lower to higher level, in subsection B and C).

G. IP Address Translation

Fig. 6. Mapping internet IP address to data center labels

Fig. 6 is a Network address translation setup that

enables the servers of the data center to communicate

with the clients on the internet; comprising internet,

router, and data center. When the client from the internet

wants to communicate with a server in the data center, it

becomes impossible because the servers in the data center

are using address label, which are logical numbers; while

the client from the internet are using IP version 6 address.

So, to make the communications possible, an IP

translation router must map the incoming IPv6 address of

arriving packets (e.g. source address = 2001:db8::2:1) to

one of the servers’ label address (e.g. destination label =

01). Meanwhile, as the server is returning the request to

the client across the internet, the router also must map the

label address of the server (e.g. source label = 02) to IPv6

415

Journal of Communications Vol. 12, No. 7, July 2017

©2017 Journal of Communications

address (e.g. destination address = 2001:db8::2:2) before

it can be sent across the internet.

TABLE I: SUMMARY OF NETWORK INVENTORY USED FOR SIMULATION

ON RIVERBED

As shown in Table I and represented on the graphs,

152 links represents the single FT without extra links

Ƶ(2;4,6;4,8;1,1); 296 links represents the single FT with

extra links: Ƶ(2;4,6;4,8;1,4); 240 links represents the

hybrid FT without extra links: H2
+
(2;6,4;2,8;1,1); 304

links represents the hybrid without extra links but with

double number switches H2
+
(2;4,6;4,8;1,1); and finally

192 links represents the reversed hybrid FT without extra

links: H2
-
(2;6,4;2,8;1,1).

IV. ANALYSIS OF SIMULATION RESULTS

A. Email Results

The simulation for the three Fat-tree designs: Ƶ; H2
+
;

and H2
-
 for EMAIL applications were run using

simulation time of 900 seconds with packet size of

10,000000 bytes. At constant interarrival times of 0.025

seconds.

Fig. 7. Received email packets with failed links.

From the results of Fig. 7, it is clearly seen that the

hybrid topologies outperformed the single topologies as

the number of failed links increase. The graph shows that

the single topology with 152 links was doing well up to

the point where 50 links were failed, but as more links

failed, there was a serious drop in performance. The same

thing applies to the extra links Fat-tree topology with 296

links, which also shows a significant decrease in

performance as more links failed. However, the hybrid

topologies showed a graceful performance degradation as

the number of failures increase.

Although the Single fat-tree topology with 156 links

Ƶ(2;4,6;4,8;1,1) is half of the Hybrid topology with 304

links H2
+
(2;4,6;4,8;1,1), but the average received packet

of the former when 80 links were failed (6.97 pkt/sec) is

not up to half of the average received packet of the latter

when 80 links were failed (24 pkt/sec). Meanwhile, the

other hybrid designs H2
+
(2;6,4;2,8;1,1), and H2

-

(2;6,4;2,8;1,1); with same number of switches and servers

and fewer links, outperformed the single fat-tree designs.

These results show that the hybrid designs can tolerate

fault more than the single fat-tree designs and should be a

better option.

B. FTP Results

The simulation for the three Fat-tree designs: Ƶ; H2
+
;

and H2
-
 for FTP Applications were run using simulation

time of 900 seconds with packet size of 100,000 bytes. At

constant inter- request time of 0.5 seconds. The graph

shows the decline in the number of average received

packets/secs from a zero failed link to 80 failed links.

Fig. 8. Received ftp packets with failed links.

From the results shown in Fig. 8, it is undoubtable that

the reversed hybrid with 192links performed better than

the single fat-tree topology with 296links. The judgement

is because the reversed hybrid has 41 percent of failed

links and outputted 1.89pkt/sec at 80 failed links, while

the single with 296links has 27 percent of failed links and

has a throughput of 1.97 pkt/sec. Also, the former has less

complexity than the latter.

Likewise, the single topology with 152links has a 52

percent of failed links and produced throughput of 0.14

pkt/sec, which is nowhere nearer to the received packet of

the double hybrid H2
+
(2;4,6;4,8;1,1) of 26 percent failed

links that has 2.57 pkt/sec. Although the double hybrid is

twice the single fat tree, but the results from when 50

links were failed to 80 failed links are with large margin.

Fig. 9 shows the graph of the percentage of FTP packet

loss with failed links. The graph tells us the exact percent

of packet that was lost during the simulation at different

stages of failed links for each of design. We calculate the

packet loss using equation 10.

416

Journal of Communications Vol. 12, No. 7, July 2017

©2017 Journal of Communications

 (10)

417

Journal of Communications Vol. 12, No. 7, July 2017

©2017 Journal of Communications

The graph of Fig. 9 shows that at zero failed links, the

two single topologies have 75% packet loss. But as the

number of failed links are increased to 80, the packet loss

increased to 76%. Meanwhile the percentage of packet

loss for the hybrids topologies at zero failed links and at

80 failed links are the same, 74% and 75% for hybrid and

reversed hybrid respectively.

Fig. 9. Percentage of ftp packet loss with failed links

V. CONCLUSION

Comparing the overall results of both EMAIL and FTP

applications for the single fat-tree topology of 296 links

Ƶ(2;4,6;4,8;1,4), with the reversed hybrid topology of 192

links H2
-
(2;6,4;2,8;1,1); shows that the latter has a better

performance, tolerates faults, and will help reduce

network complexity. Our reversed hybrid design shows

that fault tolerance cannot only be achieved by adding

more links and redundant devices, rather a bespoke

design plays a greater role. The uniqueness of this design

is that it has a replica of alternative paths for upward

traffic forwarding to the client, on the downward traffic

forwarding to the servers for the achievement of full

bisection, deadlock freedom, and fault tolerance. This

helps improves the challenges of ‘nearest common

ancestor switch’ that is common in Fat-trees that made it

prone to single point of failure. Therefore, with all these

qualities found in our reversed hybrid topology, it proves

that it is a better topology for cloud data center amongst

other cloud data centers if fault tolerance is the prime

target.

In like manner, the tremendous differences seen in the

received packets between the hybrid topology

H2
+
(2;4,6;4,8;1,1), and the single topology

Ƶ(2;4,6;4,8;1,1); for both EMAIL and FTP applications

show that the hybrid is the best bet if fault tolerant

network is needed in a data center. The cost of the extra

switches is the trade-off for the robust topology. These

results speak volume of our proposed designs as they will

aid the actualization of a fault tolerance and graceful

performance degradation in a cloud data center.

REFERENCES

[1] S. C. Joshi and K. M. Sivalingam, “On fault tolerance in

data center network virtualization architectures,” in Proc.

IEEE International Conference on Advanced Networks and

Telecommunications Systems, 2013, pp. 1–6.

[2] Y. Liu, J. K. Muppala, and M. Veeraraghavan, “A survey

of data center network architectures,” 2014, p. 22.

[3] C. Guo, et al., “BCube: A high performance, server-centric

network architecture for modular data centers,” in Proc.

ACM SIGCOMM Conference on Data Communication,

2009, pp. 63–74.

[4] G. Zarza, et al., “FT-DRB: A method for tolerating

dynamic faults in high-speed interconnection networks,” in

Proc. 18th Euromicro Conference on Parallel, Distributed

and Network-Based Processing, 2010, pp. 77–84.

[5] L. Barroso and U. Holzle, “The case for energy-

proportional computing,” Computer, vol. 40, no. 12, pp.

33–37, 2007.

[6] Y. Wu, et al., Scalable Computing and Communications:

Past, Present, and Future, 2012, pp. 1–6.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,

commodity data center network architecture,” in Proc.

ACM SIGCOMM 2008 Conference on Data

Communication, 2008, pp. 63–74.

[8] R. N. Mysore, A. Pamboris, N. Farrington, et al., “Portland:

A scalable fault-tolerant layer 2 data center network

fabric,” ACM SIGCOMM Computer Communication

Review, vol. 39, no. 4, pp. 39–50, 2009.

[9] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,

and A. Vahdat, “Hedera: Dynamic flow scheduling for data

center networks,” in Proc. 7th USENIX Conference on

Networked Systems Design and Implementation, 2010, p.

19.

[10] C. Minkenberg, R. P. Luijten, and G. Rodriguez, “On the

optimum switch radix in fat tree networks,” in Proc. IEEE

12th International Conference on High Performance

Switching and Routing, 2011, pp. 44–51.

[11] Y. Sun, J. Chen, Q. Liu, and W. Fang, “Diamond: An

improved fat-tree architecture for large-scale data centers,”

Journal of Communications, vol. 9, no. 1, pp. 91–98, 2014.

[12] A. Peratikou and M. Adda, “Optimisation of extended

generalised fat tree topologies,” Chapter 1–10, January

2014

[13] E. Zahavi, “Fat-Trees routing and node allocation

providing non-blocking MPI global collectives for exascale

jobs,” Electrical Engineering, pp. 1–8, 2010.

[14] “Routing and fault tolerance in Z-Fat tree, adda Mo:

Peratikou adamantini,” IEEE Transactions on Parallel and

Distributed Systems, no. 99, p. 1, 2017.

[15] M. Suchara, et al., “Network architecture for joint failure

recovery and traffic engineering categories and subject

descriptors,” ACM SIGMETRICS, pp. 97–108, 2011.

[16] H. W. Park, I. Y. Yeo, J. R. Lee, and H. Jang, “Study on

big data center traffic management based on the separation

of large-scale data stream,” in Proc. Seventh International

Conference on Innovative Mobile and Internet Services in

Ubiquitous Computing, 2013, pp. 591–594.

418

Journal of Communications Vol. 12, No. 7, July 2017

©2017 Journal of Communications

[17] N. Farrington, et al., “Helios: A hybrid

electrical/opticalswitch architecture for modular data

centers,” in Proc. ACM SIGCOMM ’10, 2010, pp. 339–50.

[18] E. For, Optical Interconnection Networks in Data Centers:

Recent Trends and Future Challenges, Sept. 2013, pp. 39–

45.

[19] B. Bogdanski, “Optimized routing for fat-tree topologies,”

PhD thesis submitted for the degree of Philosophy Doctor

Department of Informatics Faculty of Mathematics and

Natural Sciences University of Oslo, January 2014.

[20] A. Peratikou, “An optimized and generalized node for fat

tree classes,” PhD thesis Submitted for the Degree of

Doctor of Philosophy, Department of Computer Science,

Faculty of Technology, University of Portsmouth, UK,

April 2014.

[21] S. Ohring, et al., “On generalized fat trees,” in IPPS, Santa

Barbara, CA, USA, pp. 37–44.

[22] E. Zahavi, I. Keslassy, and A. Kolodny, “Quasi fat trees for

HPC clouds and their fault-resilient closed-form routing,”

in Proc. 22nd Annual Symposium on High-Performance

Interconnects, 2014, pp. 41–48.

Humphrey C. Emesowum, PhD

research student at the School of

Computing, University of Portsmouth.

He is researching on the Improvement of

Fault Tolerance Capability on Cloud

Data Center Networks. He Obtained his

BSc in Network Engineering and

Telecommunication Studies from

Nottingham Trent University in 2012. In

2014, he obtained his Master’s degree in Information

Technology Management. He is a member of The Institution of

Engineering and Technology IET.

Dr. Athanasios Paraskelidis, A senior

Lecturer, Deputy Admissions Tutor for

Undergraduate Degrees University of

Portsmouth. He is currently lecturing

Computer Systems Architecture and

Networks; Network Fundamentals; and

Interaction in computer Systems. He

obtained a PhD in Wireless Network

Segregation Utilising Modulo in Industrial Environments from

the University of Portsmouth. He has acted as member of the

Technical Program Committee panel for some international

conferences and currently a Co-Investigator on Future

Technologies for Construction and Asset Information

Management; and a member of the Member of the Institute of

Electrical and Electronics Engineers (IEEE).

Dr. Mo Adda, Principal Lecturer at the

University of Portsmouth since 2002. He

obtained a PhD in distributed systems

and parallel processing from the

University of Surrey. As a Senior

Lecturer, He taught programming,

computer architecture and networking for

10 years at the University of Richmond.

From 1999-2002, He worked as a senior software engineer

developing software and managing projects on simulation and

modelling. He has been researching parallel and distributed

systems since 1987. His research interests include

multithreaded architectures, mobile networks and business

process modelling, parallel and distributed processing, wireless

networks and sensor networks, network security, embedded

systems, simulation and modelling, mobile intelligent agent

technology

