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Abstract— One of the main research concerns of Data Center 

Network designs is the achievement of reasonable throughput 

during multiple failures. To design a fault tolerant data center 

network that will give operators the operational efficacy they 

needed to achieve such reasonable throughput is a hard nut to 

crack. In this paper, we proposed an improved version of fat-

tree interconnection to address the issues of fault tolerance. Fat-

Tree is a well-known architecture widely used in data center 

networks due to its congestion control and fault tolerance 

capabilities attributable to its availability of alternative paths 

from source to destination. Our focus is on cloud data center for 

client to server communications, thus Email and FTP 

applications were run separately on all the designs. Using the 

same number of servers and switches, we proved that our 

proposed Hybrid and Reversed Hybrid designs outperformed 

Fat-tree topology designs at multiple failures. The results show 

an improvement on fault tolerance capability, and cost-

effectiveness for cloud data center. 

 

Index Terms—Fat-Tree, fault tolerance, cloud data center,

graceful performance degradation, reversed hybrid

I. INTRODUCTION 

In this era of cloud computing with a lot of internet-

based services, as well as big data and internet of things 

being stored and retrieved from data center network; it is 

pertinent to examine the fault tolerance capabilities of 

cloud data center networks so that the right choice of 

topology can be made during deployment. It is also 

worthwhile to bear in mind that for performance, 

reliability, and availability to increase in data center 

network, fault tolerance is an essential and unavoidable 

requirement; so that even during failure there will still be 

available paths for packet transfer [1].  Liu et al. pointed 

out that one of the undoubtable features of data center is 

that they are prone to failures, which is because of many 

switches, servers, and links [2].  

These observations agree with the assertion by [3]-[5] 

that since failure in data center infrastructure is inevitable, 

the network design must be in such a way that any 

common failure that occurs must be recovered from 

immediately, while adequate performance must also be 

maintained amidst such failure. Furthermore, in line with 

the need for communication growth and increase in 

traffics in cloud data center networks, new architectures 

need to be designed. And because these architectures 
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contribute majorly in data center design - as a backbone, 

it is therefore needful to be very careful in the design 

consideration [6].  
In view of this, and to work around abovementioned 

challenges, Fat Tree topology, which originates from 

fixed topology has been in use to design a data center 

network [2]. This is due to its ability to improve fault 

tolerance and congestion control because of its multi-

paths  from source  to destination [7]-[9]. However, the 

conventional Fat tree has been known for lacking 

scalability, has a single point of failure and 

unmanageably high switch ports towards the root of the 

topology [10], [11]. Therefore, the extended generalized 

fat trees came into existence through Ohring et al., used 

for different performance requirements because it allows 

variable number of switch ports to be used at different 

levels of the network [10], [12]-[13]. Our work is derived 

from that of the authors in [14], called Zoned-Fat tree (Z-

Fat tree,). An extension of Fat-Trees providing extra 

degree of connectivity to utilize the extra ports per 

switches that are in some cases, not utilized by the 

architectural constraints of other variants of fat trees. 

Based on this, we have proposed bespoke hybrid designs 

of Fat-tree for the improvement of cloud data center 

networks that will tolerate fault, lessen congestion, and 

guarantee a graceful degradation of performance during 

multiple failures.  

Subsequently, in Section 2, we succinctly looked at 

some related works to improve data center performance; 

Section 3 detailed the model design and description; 

Section 4 is where the simulation results for Email and 

FTP applications on different topologies are analyzed, 

compared, and contrasted. In the last Section, 5, we drew 

conclusion based the fault tolerance capability of each 

design, which is visible from the throughput performance 

under multiple failures.  

II. RELATED WORKS 

Due to the economies of scale in the trend of cloud 

computing because of the growth in internet 

communication, increase in traffics, emergence of 

internet of things (IoT) and big data transfer; many 

researchers now focus on robust ways to improve on the 

cloud data center networks for better performance in 

terms of congestion control, availability, fault tolerance 

and reliability.  

The authors in [1] acknowledged that for reliability 

and availability to increase in data center, fault tolerance 
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is an essential and inevitable requirement. They therefore 

proposed the use of fault tolerance mechanism in virtual 

data center hosted by physical data center to handle 

server failures. They achieved this by relocating the 

virtual machines that were hosted in the failed server to 

another server. By doing this they recovered all fault and 

server utilization by 90%. They also introduced a load 

balancing scheme to the network by using clustering to 

efficiently allocate the virtual data center on the physical 

data center. By so doing the impact of server failure in 

virtual data center was reduced by allocating virtual data 

center across the physical data center network. Although 

their work aimed at improving the fault tolerance of data 

center, but it is only based on server failure; also 

processing time for the relocation of the virtual machine 

during failure is time consuming and might disrupt the 

reliability sought for. Meanwhile our work is targeted at 

the commonest communication failure in data center, 

which are switches and links failures; and our designs 

improve the fault tolerance capability of the network in 

real time.  

and failure recovery mechanisms to help the evenly 

distribution of traffic, failure recovery, enable reliable 

data delivery in the presence of link failures and reduce 

operational costs of data centers. This architecture 

comprises: a precomputed multipath routing that ensures 

continuous connectivity in the event of failure; path-level 

failure detection that detects and recovers failures 

performed by the ingress router, though it does not learn a 

failed link only a path failure; and local adaptation to path 

failures for traffic rebalancing on the healthy paths upon 

path failure detection on the network. However, the 

shortcomings of this proposal give our work an edge over 

it; such as the inability to proactively detect a faulty 

device, even as the path detection is after failure has 

occurred. This will cause tremendous delay when 

transferring from the failed path to the pre-computed 

alternate paths, which may cause traffic disruptions in 

data center. Nevertheless, our hybrid designs are cost 

effective because we used same amount of resources of 

single topology for our hybrid topology and in some 

cases with fewer links, which helps reduce network 

complexity. The traffic disruption encountered in this 

proposal [15] caused by delay in transferring traffic from 

failed to healthy path is another downtime that our 

topologies do not experience, therefore making our work 

fault tolerant with a graceful performance degradation for 

data center communications. 

In a bid to improve the performance of data center 

network, the authors in [16] came up with traffic 

separation techniques. With this mechanism, they 

separated big data network traffic from that of the 

ordinary data center traffic because they believed the 

network problem of big data centers is that big data 

traffic severely affects data center network. This 

guarantees that no coexistence of different traffics on the 

same path so that transmission journey of the big data 

traffic will be short and effective; thereby improving the 

traffic congestion in data center network. Well, the 

concept is good but they failed to realize that fault 

tolerance is the bedrock for reliability and availability in 

data center [1]. Therefore, with our robust designs that 

encompass fault tolerance, congestion control, and 

graceful performance degradation, the issue of traffic 

congestion is settled. 

Furthermore, there are other interesting new trends in 

designing data center network with the use of optical 

interconnection based on wavelength division multiplex 

links. A typical example is called the Helios architecture 

[17], a 2-layer hybrid circuit-based data center network 

that uses optical and commodity switches. Its core 

switches are either optical circuit switches or electrical 

switches, while the top of the rack (ToR) switches are 

typical packet switches. For high bandwidth and long-

lived communications, the optical circuit switches are 

used between the ToR switches, whereas the electrical 

packet switches are used for fast all-to-all communication 

between pod switches. However, [18] identified that 

although optical interconnection provides low latency, 

reduced power, and high capacity data center networks; 

but scalability, cost-effectiveness, and fault tolerance are 

its greatest challenges. Therefore, with these pros and 

cons of the optical interconnects, we could be proud of 

our fat tree-based data center designs because they can be 

efficiently scaled, cost effective, and fault tolerant.  

In a nutshell, to the best of our knowledge, our 

proposed designs meet the three properties that make fat 

tree as a dominant choice in high performance 

interconnect, as stipulated in [19], which are: (i) deadlock 

freedom that makes it possible to route packets without 

using virtual channels; (ii) inherent fault-tolerance for 

easily handling of faults with the existence of multiple 

paths from source to destination; and (iii) full bisection 

bandwidth, where network sustains full speed 

communication between its two halves. And with our 

reversed hybrid that has an exact replica of the number of 

upward paths in the downward direction, full bisection, 

deadlock freedom, and fault tolerance are all achievable. 

III. MODEL DESCRIPTION 

Fat trees, as discussed in [14], [19]-[22], with the 

notation FT(h;m1,m2..,mh;w1,w2..,wh) was defined thus: h 

represents switch levels of the tree numbered from 0 at 

the bottom. The  sequence ml, m2 represent the number of 

children each switch at level1 and level2 has respectively; 

while wl, w2 represent the number of parent-switches a 

host and a switch at levell−1 and level1 has respectively. 

To construct our fat tree variants designed for comparing 

fault tolerance capability, it is pertinent to start from the 

basis, which are the mathematical equations for switch 

level relationship, switch connectivity and port mapping. 

By default we used full connectivity to connect the 

servers at levell-1 to level1 switches for each first zones, 

and the numbering of switches and its ports at every level 
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are from left to right starting from zero. Where there is no 

added extra links, the switch to switch connection is done 

by connecting each lower level switch to the quotient of 

the divisor (the greatest common divisor (gcd) of Rn+1 

and Rn,) and the dividend (Rn+1); which is Rn+1/gcd(Rn+1, Rn). 

Meanwhile where extra links are used in the connection, 

we introduced the pattern used for Z-Fat tree by the 

authors of [14], [20]. The Z-Fat tree describes the number 

of root nodes per zone in its semantics and adds a degree 

of connectivity as Ƶ (h; z1, z2, …,zh; r1, r2, …,rh; g1, 

g2, …,gh). Where h refers to the number of levels, zn 

represents the number of zones at level n, rn is the number 

of root nodes within each of the zones zn+1, and gn 

specifies the degree of explicit connectivity at level n.  

Therefore, for our single topology,    Fig. 1 

Ƶ(2;4,6;4,8,1,1), the sequence r1 =4 and r2 =8 refers to the 

number of root nodes inside each of the zones z2 and z3 

respectively. The sequence g1=1 and g2=1, indicates there 

are no extra connections. But Fig. 2, Ƶ (2;4,6;4,8;1,4) 

shows the sequence g1=1 and g2=4, indicates there are 

extra connections at level 2. 

For the Hybrid FT (H2
+
) designs, the same semantics 

used in Z-fat tree is applicable. For example for Fig. 3 

H2
+
(2;6,4;2,8;1,1), the sequence r1 =2 and r2 =8 refers to 

the number of root nodes inside each of the zones z2 and 

z3 respectively. But at levels 1 and 2, r1 and r2 are doubled 

because it is a hybrid. The sequence g1=1 and g2=1, 

indicates there are no extra connections. In the same 

manner, the explanation for Fig. 3 is applicable to Fig. 4 

H2+(2;4,6;4,8;1,1) with the sequence r1=4 and r2=8 

referring to the number of roots nodes inside each zones 

z2 and z3 respectively.  

For the Reversed Hybrid FT (H2
-
), Ƶ (h; z1, z2, …,zh; r1, 

r2, …,rh; g1, g2, …,gh) still holds, but the topology is 

divided into two parts. With the left-hand-side an exact 

replica of the right-hand-side in a reversed form, from 

level1 and level2. So that Fig. 5, H2
-
(2;6,4;2,8;1,1) shows 

that the sequence r1 =2 and r2 =8 refers to the number of 

root nodes inside each of the zones z2 and z3 respectively. 

The sequence g1=1 and g2=1, indicates there are extra 

connections. These sequences stand for each side of the 

topology in reversed form, thus it is called a reversed 

hybrid. 

A. Switch Levels Relationship 

Rn+1 = R1 + Δ (n-     

Rn+1  represents the sought after number of switches at 

the upper level of the network. R1  represents the number 

of switches at the level 1 of the topology, which must be 

equal to or greater than 2 to avoid single point of failure. 

Δ represents common difference between any levels. This 

must be constant across the topology. n  represents switch 

level. This depends on the height of the topology, but for 

simplicity, in this paper we use 2 levels for all the 

architectures.  

For example, Fig. 1 is simply: Rn+1 = R1(4) + Δ(4) (n(2)-

1); this shows that the total number of level 2 switches is 

8 since level 1 switch is 4 and a difference of 4.  

B. Switch Connectivity 

X
n+1 

= (R
n+1 

((x
n
\R

n
)\Z

n+1
) +

 
(x

n
%R

n
)* R

n+1
/gcd

(Rn,Rn+1)
 + 

k)%
 
R

n+1. 

                                                                                                                                        (2) 

where k represents ϵ {0, 1, …,R
n+1

/gcd(R
n 

, R
n+1

)-1}.[16] 

X
n+1 

 represents the number of switch sought after at the 

upper level. R
n+1   

represents the total number of switches 

at the upper level. x
n 

  represents the switch on level n 

connecting to upper level switch at X
n+1

.
  
R

n    
represents 

the total number of switches on level n connecting to 

upper level switches at R
n+1

.
  
Z

n+1   
represents the number 

of zones from upper level n
+1.  

gcd is an acronym for 

Greatest Common Divisor used to get the exact number 

of R
n+1

 switches that x
n
 will connect to. 

For example, connecting level 1 switch 0 to level 2 

switches (in Fig. 1):  

Xn+1   = (8((0\4)\6) + (0%4)*2+k)%8 

Xn+1   = (0 + 0+k)%8;      = (0+k)%8.  

where k ϵ {0, 1, …, Rn+1/gcd(Rn, Rn+1)-1}; therefore k = 

0,1.  

If k = 0, it means that (0+k(0))%8;  = 0%8 = 0. 

If k = 1, it means that (0+k(1))%8; = 1%8 = 1. Therefore, 

switches to be connected to at level 2 are: 0 and 1. 

C. Port Mapping 

Xp+1 = (((X
n
\R

n
)%Z

n+1
)*R

n
/gcd(R

n
,R

n+1

where p represents ϵ {0, 1, …, R
n
/gcd(R

n 
, R

n+1
)-1}. [16], 

Xp+1 represents switch ports to be mapped at upper level. 

p represents set of R
n+1 

switch ports to be mapped with 

X
n   

To map the first switch’s ports of first zone in level 1 

to its corresponding level 2 switch ports. Since Z
n+1 

represents number of zones from upper level R
n+1

. Using 

Fig. 1 as an example, at level 1, there are 6 zones for Z2 

within zone Z3, with r1=4 in each. With 6 zones in level 1, 

implies that the down port of each level 2 switch is 

divided into 6 zones numbered from 0 to 5. Mapping 

level 1 switch 0 in the first zone of Z2 to level 2 switches:  

Xp+1 =((( X
n
\R

n
) %Zn+1)* Rn/gcd(Rn , Rn+1)+ p). where p ϵ {0, 

1, …, Rn/gcd(Rn , Rn+1)-1} and  Xp+1 = upper switch ports. 

therefore,  

Xp+1 = (((0\4) %6) * 4/4+ p) 
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1) (1) 



        = ((0 %6) * 1+ p) 

        = 0+p       and p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1}. 

therefore Xp+1 = 0. 

Hence, level 1 switch 0 in the first zone of Z2, will be 

mapped to ports 0 of level 2 switches where it is being 

connected to. 

D. Single FTs (Ƶ) 

 

Fig. 1. Ƶ (2;4,6;4,8,1,1). The sequence r1=4 and r2=8, refers to the roots 
of the zones z2=6 and z3=1; the sequence g1=g2=1 is the explicit degree 

of connectivity. 

 

Fig. 2. Ƶ (2;4,6;4,8;1,4). The sequence r1=4 and r2=8, refers to the roots 

of the zones z2=6 and z3=1; the sequence g1=1 and g2=4 is the explicit 

degree of connectivity. 

E. Hybrid FT (H2
+
) 

 
Fig. 3. H2

+(2;6,4;2,8;1,1). The sequence r1=2 and r2=8, refers to the 
roots of the zones z2=4 and z3=1; the sequence g1= and g2=1 is the 

explicit degree of connectivity. 

 
Fig. 4. H2

+(2;4,6;4,8;1,1) The sequence r1=4 and r2=8, refers to the 

roots of the zones z2=6 and z3=1; the sequence g1=g2=1 is the explicit 

degree of connectivity.  

This is a hybrid with 64 switches instead of 32 switches like 

other topologies 

F. Reversed Hybrid FT (H2
-
) 

 

Fig. 5. H2
-(2;6,4;2,8;1,1). The sequence r1=2 and r2=8, refers to the roots 

of the zones z2=4 and z3=1; the sequence g1=g2=1 is the explicit degree 

of connectivity. 

Switch level connectivity and port mapping for the 

right-hand side of the topology, is done based on up-

down pattern (from upper to lower level), whereas, the 

left-hand-side of the topology is connected and mapped 

like the given example that was done in down-up basis 

(lower to higher level, in subsection B and C).   

G. IP Address Translation 

 

Fig. 6. Mapping internet IP address to data center labels 

Fig. 6 is a Network address translation setup that 

enables the servers of the data center to communicate 

with the clients on the internet; comprising internet, 

router, and data center. When the client from the internet 

wants to communicate with a server in the data center, it 

becomes impossible because the servers in the data center 

are using address label, which are logical numbers; while 

the client from the internet are using IP version 6 address. 

So, to make the communications possible, an IP 

translation router must map the incoming IPv6 address of 

arriving packets (e.g. source address = 2001:db8::2:1) to 

one of the servers’ label address (e.g. destination label = 

01). Meanwhile, as the server is returning the request to 

the client across the internet, the router also must map the 

label address of the server (e.g. source label = 02) to IPv6 
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address (e.g. destination address = 2001:db8::2:2) before 

it can be sent across the internet.  

TABLE I: SUMMARY OF NETWORK INVENTORY USED FOR SIMULATION 

ON RIVERBED 

 
 

As shown in Table I and represented on the graphs, 

152 links represents the single FT without extra links 

Ƶ(2;4,6;4,8;1,1); 296 links represents the single FT with 

extra links: Ƶ(2;4,6;4,8;1,4); 240 links represents the 

hybrid FT without extra links: H2
+
(2;6,4;2,8;1,1); 304 

links represents the hybrid without extra links but with 

double number switches H2
+
(2;4,6;4,8;1,1); and finally 

192 links represents the reversed hybrid FT without extra 

links: H2
-
(2;6,4;2,8;1,1).  

IV. ANALYSIS OF SIMULATION RESULTS 

A. Email Results 

The simulation for the three Fat-tree designs: Ƶ; H2
+
; 

and H2
-
 for EMAIL applications were run using 

simulation time of 900 seconds with packet size of 

10,000000 bytes. At constant interarrival times of 0.025 

seconds. 

 
Fig. 7. Received email packets with failed links.  

From the results of Fig. 7, it is clearly seen that the 

hybrid topologies outperformed the single topologies as 

the number of failed links increase. The graph shows that 

the single topology with 152 links was doing well up to 

the point where 50 links were failed, but as more links 

failed, there was a serious drop in performance. The same 

thing applies to the extra links Fat-tree topology with 296 

links, which also shows a significant decrease in 

performance as more links failed. However, the hybrid 

topologies showed a graceful performance degradation as 

the number of failures increase. 

Although the Single fat-tree topology with 156 links 

Ƶ(2;4,6;4,8;1,1) is half of the Hybrid topology with 304 

links H2
+
(2;4,6;4,8;1,1), but the average received packet 

of the former when 80 links were failed (6.97 pkt/sec) is 

not up to half of the  average received packet of the latter 

when 80 links were failed (24 pkt/sec). Meanwhile, the 

other hybrid designs H2
+
(2;6,4;2,8;1,1), and H2

-

(2;6,4;2,8;1,1); with same number of switches and servers 

and fewer links, outperformed the single fat-tree designs. 

These results show that the hybrid designs can tolerate 

fault more than the single fat-tree designs and should be a 

better option. 

B. FTP Results 

The simulation for the three Fat-tree designs: Ƶ; H2
+
; 

and H2
-
 for FTP Applications were run using simulation 

time of 900 seconds with packet size of 100,000 bytes. At 

constant inter- request time of 0.5 seconds. The graph 

shows the decline in the number of average  received 

packets/secs from a zero failed link to 80 failed links. 

 
Fig. 8. Received ftp packets with failed links. 

From the results shown in Fig. 8, it is undoubtable that 

the reversed hybrid with 192links performed better than 

the single fat-tree topology with 296links. The judgement 

is because the reversed hybrid has 41 percent of failed 

links and outputted 1.89pkt/sec at 80 failed links, while 

the single with 296links has 27 percent of failed links and 

has a throughput of 1.97 pkt/sec. Also, the former has less 

complexity than the latter.  

Likewise, the single topology with 152links has a 52 

percent of failed links and produced throughput of 0.14 

pkt/sec, which is nowhere nearer to the received packet of 

the double hybrid H2
+
(2;4,6;4,8;1,1) of 26 percent failed 

links that has 2.57 pkt/sec. Although the double hybrid is 

twice the single fat tree, but the results from when 50 

links were failed to 80 failed links are with large margin. 

Fig. 9 shows the graph of the percentage of FTP packet 

loss with failed links. The graph tells us the exact percent 

of packet that was lost during the simulation at different 

stages of failed links for each of design. We calculate the 

packet loss using equation 10. 
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The graph of Fig. 9 shows that at zero failed links, the 

two single topologies have 75% packet loss. But as the 

number of failed links are increased to 80, the packet loss 

increased to 76%. Meanwhile the percentage of packet 

loss for the hybrids topologies at zero failed links and at 

80 failed links are the same, 74% and 75% for hybrid and 

reversed hybrid respectively.  

 
Fig. 9. Percentage of ftp packet loss with failed links 

V. CONCLUSION 

Comparing the overall results of both EMAIL and FTP 

applications for the single fat-tree topology of 296 links 

Ƶ(2;4,6;4,8;1,4), with the reversed hybrid topology of 192 

links H2
-
(2;6,4;2,8;1,1); shows that the latter has a better 

performance, tolerates faults, and will help reduce 

network complexity. Our reversed hybrid design shows 

that fault tolerance cannot only be achieved by adding 

more links and redundant devices, rather a bespoke 

design plays a greater role. The uniqueness of this design 

is that it has a replica of alternative paths for upward 

traffic forwarding to the client, on the downward traffic 

forwarding to the servers for the achievement of full 

bisection, deadlock freedom, and fault tolerance. This 

helps improves the challenges of ‘nearest common 

ancestor switch’ that is common in Fat-trees that made it 

prone to single point of failure. Therefore, with all these 

qualities found in our reversed hybrid topology, it proves 

that it is a better topology for cloud data center amongst 

other cloud data centers if fault tolerance is the prime 

target. 

In like manner, the tremendous differences seen in the 

received packets between the hybrid topology 

H2
+
(2;4,6;4,8;1,1), and the single topology 

Ƶ(2;4,6;4,8;1,1); for both EMAIL and FTP applications 

show that the hybrid is the best bet if fault tolerant 

network is needed in a data center. The cost of the extra 

switches is the trade-off for the robust topology. These 

results speak volume of our proposed designs as they will 

aid the actualization of a fault tolerance and graceful 

performance degradation in a cloud data center. 
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