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Abstract—In this paper, we propose a new method of linear 

prediction (LP) analysis for estimating LP coefficients that are 

used in current speech coders. This method improves the 

robustness of LP coefficients computed from speech signals 

corrupted by noise as well as offering better quantisation 

efficiency. The quantisation performance and the noise-

robustness obtained by the proposed LP coefficients were 

compared to that obtained by the LP coefficients computed 

using the autocorrelation and LP spectrum modification 

methods of LP Analysis, in terms of spectral distortion (SD). 

The results indicate that the proposed LP coefficients were more 

robust to noise and also offered transparent quantisation at 

lower bit-rates (savings of up to 2 bits/frame) than other LP 

coefficients. 
 
Index Terms—Linear prediction coefficients, linear prediction 

analysis, two-split vector quantisation, three-split vector 

quantisation, spectral distortion measure 

I. INTRODUCTION 

The autocorrelation method of linear prediction 

analysis (AM-LP) is widely used as a basic technique for 

low bit-rate speech coding applications [1]. In these 

applications, obtained-LP coefficients, which represent 

the power spectrum envelope (short-term) of a speech 

signal using a low-order all-pole filter [2], are typically 

converted to LP parameters (e.g. line spectral frequencies 

(LSFs)) and then quantised using as few bits as possible 

prior to their transmission [3]. In noise-free environments, 

the performance of LP parameter-based speech coders is 

often satisfactory. However, in the presence of 

background noise, the LP analysis method leads to an 

inaccurate estimate of the LP spectrum of the speech; 

hence, the variance of the estimated LP coefficients is 

increased [4], which results in an overall quality 

deterioration of the reconstructed speech [5] and [6]. 

Various studies have been proposed to improve the LP 

analysis’s immunity to noise. A noise reduction method 

using the technique of pitch synchronous addition was 

reported in [7]. In this approach, multiple pitch periods 

taken from the analysis frame are synchronously 

averaged to obtain the estimated frame. The analysis of 

pitch synchronous yields reliable estimation of pitch in a 

voiced segment of speech signal, however, it is 

susceptible to errors at the boundaries of unvoiced and 

voiced segments where the pitch periods are often 
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irregular. The noise compensation approach, which is 

employed in the LP analysis of the noisy speech, was 

reported in [6]. The subtraction procedure of this method 

is applied iteratively to ensure that the autoregressive 

(AR) model is stable, in this case the Levinson-Durbin 

algorithm is used for each iteration. An LP spectrum 

modification approach (LPSM) based on linear 

extrapolation for noisy speech was proposed in [8]. In 

this scheme, the LP spectrum is modified in the high 

frequency region by applying a linear suppression rule, 

while the low frequency region remains preserved. The 

Spectral Envelope Estimation Vocoder (SEEVOC) 

method is another scheme proposed to improve the 

conventional LP analysis method’s performance [9]. In 

the SEEVOC method, only those portions of the speech 

power spectrum obtained by the Fast Fourier Transform 

(FFT), which are less noisy, are used. Therefore, it 

attempts to clean the noisy speech power spectrum by 

ignoring the spectral parts that are affected more by noise. 

In terms of the estimation of the power spectrum 

envelope, the accuracy of this method requires a prior 

knowledge of the average speech signal pitch (for 

aperiodic waveforms). The behavior of the 

aforementioned methods is not appropriate for real-time 

applications. 

In this paper, a modified procedure for performing LP 

analysis is proposed which reduces the variance of LP 

coefficient estimates in order to provide some noise 

robustness and also exploits some properties of the 

human auditory system. The LP coefficients are fully 

compatible with current speech coding standards and the 

algorithm proposed can be easily incorporated into the 

implementations of existing code. The quantisation 

performance of the proposed LP parameters was 

evaluated using different split vector quantisation 

schemes, as well as their robustness to noise in terms of 

the spectral distortion (SD) measurement. The results 

indicate that the proposed method provides a more 

accurate and noise-robust estimation of the LP parameters. 

This paper is organized as follows: Section II describes 

the principles of the conventional LP analysis method. 

Section III provides the framework for the proposed LP 

analysis method. Section IV outlines the experimental 

setup that we used to measure the quantisation 

performance and the robustness of the LP parameters. 

Section V clarifies the details of each experiment and 
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provides the results. Section VI presents the conclusion of 

this study. 

II. LP ANALYSIS OF SPEECH SIGNAL 

In the theory of LP analysis [1], the speech signal 

𝑥(𝑛) can be approximately predicted by a linear 

combination of the past 𝑝  samples

{ ( 1), ( 2), ( 3), , ( )}x n x n x n x n p     , which can be 

described as: 
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where 𝑎𝑘 is the LP coefficients and 𝑥̂(𝑛) is referred to as 

a prediction of 𝑥(𝑛) . Furthermore, a 𝑝𝑡ℎ all-pole 

filter 𝐻(𝑧) can be used to represent the spectral envelope 

of speech signals 𝑥(𝑛), which is given by: 
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where filter gain G is to conserve the total energy 

between the speech and impulse response of 𝐻(𝑧). The 

LP coefficients {𝑎𝑘; 𝑘 = 1,2, … , 𝑝}  and the gain are 

estimated by solving the Yule-Walker equations [10]: 
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where 𝑅(𝑘) are the autocorrelation coefficients estimated 

from a frame of N samples of the speech signal ( )x n [10]: 
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Another method of estimating autocorrelation 

coefficients utilises the Einstein-Wiener-Khintchine 

theorem [10], by taking the inverse discrete-time Fourier 

transform (IFFT) of the periodogram estimate of the 

power spectrum ( )P  : 
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This relationship between the periodogram and 

autocorrelation coefficients motivates our method for 

reducing the variance of the LP coefficient estimates and 

improving the noise robustness, by manipulating the 

power spectrum of the speech signal prior to its 

approximation by AR model. 

III. PROPOSED LP ANALYSIS METHOD 

The proposed LP analysis method uses two steps to 

compute the LP coefficients. In the first step, the 

manipulation of the periodogram of the input speech is 

involved in order to reduce the variance of the spectral 

estimates and remove the parts that are more affected by 

noise. In the second step, the conventional autocorrelation 

method is applied using the modified autocorrelation 

coefficients, which are calculated by taking the inverse 

FFT of the processed power spectrum. The processed 

power spectrum is obtained through smoothing followed 

by thresholding operations. In the smoothing operation, 

the periodogram of the input speech is smoothed using 

triangular filters spaced linearly on the Bark frequency 

scale [11] in order to reduce the spectral estimate 

variance. This non-linear smoothing, which is inspired by 

the human auditory system, is performed less at lower 

frequencies, where the power components are more 

prominent, and more at higher frequencies, where the 

power components are less prominent [12], as shown in 

Fig. 1. Following the smoothing, a thresholding operation 

is performed, where the influence of low signal-to-noise 

ratio (SNR) spectral components, which are more 

affected by noise and add undesirable variance to the 

spectral estimate, are removed and replaced by the 

corresponding portions from the smoothed power 

spectrum, as shown in Fig. 2. As a consequence of the 

smoothing followed by thresholding operation, the 

dominant spectral components are preserved, while, the 

less reliable spectral valleys are ignored and replaced by a 

smoothed average. Hence, by obtaining the robust power 

spectrum estimation, its derived-LP coefficients would 

have better robustness in the presence of noise. The 

proposed algorithm is described in the following steps: 

Step 1: Compute the power spectrum 𝑃(𝑘) of a given 

frame{ ( ), 1,2, , 1}x n n N   of 𝑁 samples from a speech 

signal using the FFT [10]: 
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where  𝑃(𝑘) is the estimated power spectrum at the thk

normalized frequency bin, M is the size of FFT where

M N , and ( )w n is a Hamming window. 

Step 2: Determine the estimated smoothed power 

spectrum 𝑃(𝑘) using a triangular filter at every frequency 

bin: 
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where 𝐶(𝑘) is half the critical bandwidth of the triangular 

filter at frequency bin k . The triangular filter ( )B i is 
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which is spaced using the Bark frequency scale, which is 

given by [11]: 
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Step 3: Using the smoothed 𝑃(𝑘)  as the 

threshold,  𝑃̂(𝑘)  is formed by retaining only spectral 

components that are above the threshold. This is defined 

as: 
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Step 4: Take the inverse FFT of 𝑃̂(𝑘)  in order to 

obtain the modified autocorrelation coefficients [10]: 
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These modified autocorrelation coefficients 𝑅̂(𝑞) , 

0 ≤ 𝑞 ≤ 𝑝 , where 𝑝 is the LP analysis order, are used in 

the Levinson-Durbin recursion algorithm [10] to compute 

the LP coefficients, which we called the Smoothed and 

Thresholded Linear Prediction (STLP) coefficients. 

 
Fig. 1. Periodogram 𝑃(𝑘) (thin line) and the smoothed power spectrum 

𝑃(𝑘)  (thick line) of speech sound (vowel / e / produced by male 

speaker). 

 

Fig. 2. Periodogram ( )P k (thin line) and the resultant spectrum ˆ( )P k

(thick line) after thresholding operation of speech sound (vowel / e / 

produced by male speaker). 

The behaviour of the STLP analysis method in spectral 

modelling of speech signal is demonstrated in the 

example shown in Fig. 3. In this figure, the 

periodogram 𝑃(𝑘)of a frame of the speech sound (vowel /

e /) is shown together with the all-pole spectral models of 

order  𝑝 = 10  that were computed with two techniques: 

the proposed STLP and the AM-LP analysis methods. As 

displayed in Fig. 3, at high frequencies, the formants 

attend to have wider bandwidths because of the large 

critical bandwidths at these frequencies, where more 

smoothing is performed. Therefore, this added smoothing 

reduces the influence of noise components at higher 

frequencies. 

 
Fig. 3. Periodogram 𝑃(𝑘) with corresponding all-pole spectra of order 

p=10 computed by the conventional LP (solid) and the proposed STLP 

(dashed) analysis method of clean speech (vowel / e / produced by male 

speaker). For clarity, the periodogram is moved down by 20 dB. 

IV. EXPERIMENTAL SET-UP 

A. Database 

The TIMIT database [13], which was downsampled to 

8 kHz, was utilised for all of the simulations that 

performed for this paper. The training and testing sets 

consisted of 3696 sentences produced by 462 speakers of 

which 136 are female, and 1344 sentences produced by 

168 speakers of which 56 are female, respectively. The 

estimation of the spectral envelope was carried out using 

the FFT size of 256 frequency samples. A tenth-order of 

LP analysis with high frequency compensation [1] was 

performed every 20 ms frame. Thus, the training database 

consists of 564778 LP parameter vectors, and the 

evaluation database consists of 206323 LP parameter 

vectors which were apart of the training database. 

Because of sharp spectral peaks in the LP spectrum 

caused by the underestimation of the formant bandwidths, 

a 10 Hz bandwidth expansion was applied [3]. 

B. Performance Evaluation Criterion 

In order to determine the quality of the power spectrum, 

the SD of the estimated spectral envelope was computed 

over the power spectrum of a frequency plane as an 

objective measure. It is defined as in [3]: 

𝑆𝐷 =  √
1

𝐹𝑠
∫ [10 𝑙𝑜𝑔10 𝑃(𝑓) − 10 𝑙𝑜𝑔10 𝑃̂(𝑓)]

2𝐹𝑠

0
𝑑𝑓   (13) 
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where 𝐹𝑠  is the sampling frequency, and 𝑃(𝑓) and 𝑃̂(𝑓) 

are referred to as the true and estimated power spectra, 

respectively. As can be observed in Equation (13), a low 

SD indicates the reconstructed speech spectral envelope 

to be closer to that of the original speech, and therefore is 

of better quality. This distortion measure is carried out on 

the power spectrum produced from 20 – 30 ms frames of 

speech. The measure will be utilised to measure the 

accuracy and robustness of the proposed STLP analysis 

method in Section V.A.  

The number of bits allocated for quantisation 

influences the performance of the quantisation of the LP 

parameters. In many cases, the number of bits allocated 

for quantisation is found when the preferred rate of 

spectral accuracy has been achieved. This provides an 

equivalent basis of comparison between the proposed 

STLP analysis method and the AM-LP, LPSM analysis 

methods. To evaluate the quantisation process, the SD 

will be observed in two different classifications: the 

average SD for the whole data and the percentage of 

outlier frames. An outlier frame has an SD ≥ 2 dB. The 

outlier frames are divided into the following types: outlier 

frames with an SD in the range of 2 – 4 dB; and outlier 

frames with an SD greater than 4 dB. The preferred 

performance for the quantisation of the LP parameters is 

when transparent quantisation is achieved [3], which is 

defined by the following conditions: 

 The average SD is about 1 dB. 

 The number of outlier frames with an SD between 2 – 

4 dB is less than 2%. 

 No outlier frames are greater than 4 dB. 

V. RESULT AND DISCUSSION  

A. Noise Robustness Analysis 

 
Fig. 4. Spectral distortion values (SD) between the AM-LP, LPSM and 

STPS spectral envelopes of order p=10 computed from clean and noisy 

speech (vowel / e / produced by male speaker). Speech was corrupted 
by two types of noise: (a) additive zero-mean Gaussian white noise, and 

(b) street noise, in six SNR categories. 

The robustness of the spectral envelope estimated 

using the STLP method was compared with the 

robustness found using both the AM-LP and LPSM 

methods. Simulations to find the robustness of the 

proposed method were carried out by measuring the SD 

between the power spectrum of the clean and noisy signal, 

respectively. The results that were obtained from this 

experiment are shown in Fig. 4. The data shows that the 

STLP parameters appeared more robust to noise than the 

AM-LP and LPSM  parameters; the SDs of the STLP 

analysis method were consistently lower than other 

analysis methods for all SNRs. By referring to the 

example shown in Fig. 1 and 2, this behavior can be 

explained by the effectiveness of the smoothing and 

thresholding operations in the computation of the STLP 

parameters. 

B. Quantisation Performance of LP Parameters 

The full-search vector quantisation (VQ) has a high 

computational complexity that requires excessive 

memory space in order to perform the quantisation of the 

codebook. Though the split VQ mechanism is suboptimal, 

it lowers both the computational complexity and the 

required memory space to a manageable level without 

significantly affecting the performance of the VQ [3]. As 

a result, we used the split VQ to study the quantisation 

performance of the LP parameters. 

In this split VQ, the LSF vector, which is a popular 

representation of the LP parameters, is separated into 

different parts of the lower order. The codebooks of the 

VQ were designed using the Linde-Buzo-Gray (LBG) 

algorithm [14] with the weighted LSF distance measure 

for every part, which is given by [3]: 

 

10
2

1

ˆ ˆ( , ) [ ( )]i i i i

i

d f f c w f f



    (14) 

where 𝑓𝑖  and 𝑓𝑖  are the 𝑖𝑡ℎ  LSF representation in the 

approximated and original vector, respectively, and the 

weights 𝑤𝑖  and 𝑐𝑖  are assigned to the 𝑖𝑡ℎ  LSF. The 

variable weight 𝑤𝑖  is given by [3]: 

 [ ( )]r
i iw P f   (15) 

where 𝑃(𝑓) is the LP power spectrum and 𝑟 is equal to 

0.15. The fixed weight 𝑐𝑖 is given by [3]: 
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We used two-split VQ (where the components of the 

LSF vector are split into (4,6)) and three-split VQ (where 

the components of the LSF vector are split into (3,3,4)).  

In all experiments, the quantisation performance for 

each method was evaluated using the SD measure, as 

given in Equation (13), where 𝑃(𝑓)  and 𝑃̂(𝑓)  are the 

power spectrum of the original and reconstructed speech, 

respectively, and 𝐹𝑠 covers the partial-band SD (i.e. 0 – 

3kHz), which is used to evaluate the quantisation 

schemes that use a weighted distance measure [15]. 
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The quantisation performances obtained from the two-

split VQ experiments are listed in Tables I, II and III for 

the AM-LP, LPSM and STLP analysis methods, 

respectively. The results indicate that the two-split VQ 

that uses the AM-LP and LPSM analysis methods 

required 24 bits/frame to achieve the transparent 

quantisation. However, the STLP analysis method 

required only 22 bits/frame, which saved 2 bits/frame 

from other techniques. The outlier frames percentage 

between 2 – 4 dB was much lower in favour of the 

proposed STLP analysis method.  

TABLE I: PARTIAL-BAND AVERAGE SPECTRAL DISTORTION (SD) OF THE 

TWO-SPLIT VECTOR QUANTISER AS A FUNCTION OF BIT-RATE (USING 

THE AM-LP ANALYSIS METHOD WITH THE WEIGHTED LSFS DISTANCE 

MEASURE) 

Bits used 
Av. SD 

 (in dB) 

Outliers (%) 

𝟐 − 𝟒 dB > 𝟒 dB 

26 0.90 0.39 0.00 

25 0.95 0.58 0.00 

24 1.04 1.07 0.00 
23 1.09 1.68 0.00 

22 1.19 3.16 0.00 

21 1.26 4.23 0.00 
20 1.31 6.10 0.00 

TABLE II: PARTIAL-BAND AVERAGE SPECTRAL DISTORTION (SD) OF 

THE TWO-SPLIT VECTOR QUANTISER AS A FUNCTION OF BIT-RATE 

(USING THE LPSM ANALYSIS METHOD WITH THE WEIGHTED LSFS 

DISTANCE MEASURE) 

Bits used 
Av. SD 

 (in dB) 

Outliers (%) 

𝟐 − 𝟒 dB > 𝟒 dB 

26 0.92 0.87 0.00 
25 1.00 1.41 0.00 

24 1.03 1.56 0.00 

23 1.12 2.67 0.01 
22 1.16 2.98 0.03 

21 1.26 5.20 0.04 

20 1.30 5.95 0.04 

TABLE III: PARTIAL-BAND AVERAGE SPECTRAL DISTORTION (SD) OF 

THE TWO-SPLIT VECTOR QUANTISER AS A FUNCTION OF BIT-RATE 

(USING THE PROPOSED STLP ANALYSIS METHOD WITH THE WEIGHTED 

LSFS DISTANCE MEASURE) 

Bits used 
Av. SD 

 (in dB) 

Outliers (%) 

𝟐 − 𝟒 dB > 𝟒 dB 

26 0.77 0.10 0.00 

25 0.84 0.18 0.00 

24 0.89 0.23 0.00 

23 0.96 0.52 0.00 
22 1.01 0.73 0.00 

21 1.11 1.55 0.00 

20 1.18 2.30 0.00 

TABLE IV: PARTIAL-BAND AVERAGE SD OF THE THREE-SPLIT VECTOR 

QUANTISER AS A FUNCTION OF BIT-RATE (USING THE AM-LP 

ANALYSIS METHOD WITH THE WEIGHTED LSFS DISTANCE MEASURE) 

Bits used 
Av. SD 

 (in dB) 

Outliers (%) 

𝟐 − 𝟒 dB > 𝟒 dB 

30 0.78 0.20 0.00 

29 0.80 0.27 0.00 
28 0.85 0.51 0.00 

27 0.88 0.56 0.00 

26 0.97 0.91 0.00 

25 1.05 1.73 0.00 

24 1.18 3.10 0.01 

23 1.21 3.83 0.01 

 

Tables IV, V and VI illustrate the results obtained from 

the three-split VQ for the AM-LP, LPSM and STLP 

analysis methods, respectively. It can be seen that the 

proposed STLP analysis method offers an advantage of 1 

and 2 bits/frame over the AM-LP and LPSM analysis 

methods, which required 25 and 26 bits/frame to achieve 

the quantisation transparency, respectively. 

TABLE V: PARTIAL-BAND AVERAGE SD OF THE THREE-SPLIT VECTOR 

QUANTISER AS A FUNCTION OF BIT-RATE (USING THE LPSM ANALYSIS 

METHOD WITH THE WEIGHTED LSFS DISTANCE MEASURE) 

Bits used 
Av. SD 

 (in dB) 

Outliers (%) 

𝟐 − 𝟒 dB > 𝟒 dB 

30 0.79 0.42 0.00 

29 0.86 0.72 0.00 

28 0.92 1.00 0.00 
27 0.95 1.09 0.00 

26 1.01 1.61 0.00 

25 1.04 2.52 0.01 
24 1.19 3.65 0.03 

23 1.21 4.83 0.04 

TABLE VI: PARTIAL-BAND AVERAGE SD OF THE THREE-SPLIT VECTOR 

QUANTISER AS A FUNCTION OF BIT-RATE (USING THE PROPOSED STLP 

ANALYSIS METHOD WITH THE WEIGHTED LSFS DISTANCE MEASURE) 

Bits used 
Av. SD 

 (in dB) 

Outliers (%) 

𝟐 − 𝟒 dB > 𝟒 dB 

30 0.66 0.09 0.00 

29 0.68 0.11 0.00 

28 0.77 0.33 0.00 
27 0.82 0.40 0.00 

26 0.85 0.45 0.00 

25 0.96 1.20 0.00 
24 1.01 1.36 0.00 

23 1.09 1.76 0.00 

VI. CONCLUSION 

This paper presented a modified method for estimating 

LP coefficients for current speech coders, by applying 

nonlinear smoothing followed by thresholding to the 

power spectrum. These STLP coefficients possess 

improved robustness to noise. The advantage of this 

method is that it is fully compatible with current speech 

coder implementations. The LP quantisation performance 

of the STLP coefficients, in comparison with the AM-LP 

and LPSM coefficients, was investigated for various split 

vector quantisation schemes. For two-split vector 

quantisation, the proposed STLP analysis method offered 

a saving of 2 bits/frame over the aforementioned methods. 

Additionally, for three-split vector quantisation, the 

proposed  method offered  savings of 1 and 2 bits/frame 

over the AM-LP and LPSM methods, respectively, in 

terms of the spectral distortion measure. The results 

demonstrated the improved noise-robustness of the STLP 

coefficients for low to medium SNR levels and for both 

white and street noise. Since the Bark frequency 

triangular filters used for the power spectrum smoothing 

are similar to those used in the computation of Mel 

frequency cepstral coefficients (or MFCCs), these STLP 

coefficients may exhibit better recognition performance 

and noise robustness in automatic speech recognition 
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tasks. We will investigate the use of STLP coefficients in 

the network speech recognition context in a future paper. 
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