
Mobile Agent Security Based on Cryptographic Trace and

SOS Agent Mechanisms

Sophia Alami-Kamouri, Nabil Moukafih, Ghizlane Orhanou, and Said Elhajji
Laboratory of Mathematics, Computer Sciences and Applications-Information Security

Faculty of Sciences, Mohammed V University in Rabat. Morocco

Email: Sophia.alami.kamouri, moukafih.nab, elhajji.said}@gmail.com; orhanou@fsr.ac.ma

Abstract—Mobile agent technology quickly emerged in the

field of distributed computing. Its use offers several advantages

compared to the classic Client / Server model such as reducing

network traffic, using disconnected computing, and offering

more flexibility in application development, etc. Although

mobile agent technology is considered as a powerful tool, it has

some security problems that need to be overcome. Mobile

agents, due to their mobility are vulnerable to attacks in a

hostile environment. For this reason, it is necessary to put

effective security techniques to protect them when they move

from their home host to a new one. In this paper, we propose

two security mechanisms to enhance mobile agent security. On

one hand, we use a cryptographic trace to ensure mobile agent

integrity and origin authentication, and on the other hand an

SOS agent monitor’s model is proposed to protect the mobile

agent system against malicious hosts and DOS attacks. An

implementation of the SOS agent approach will be presented.

Index Terms—Mobile agent, security, SOS agent,

cryptographic trace.

I. INTRODUCTION

A mobile agent is a software code that can move from

one platform to another at different times, it can suspend

execution on one platform and then resume on another

platform to get closer to appropriate resources.

When the client gives a mission to achieve to an agent,

the latter moves in the network to access services locally

and complete his task. This works in 3 steps:

 The client activate the mobile agent and describe its

mission,

 The mobile agent migrates to access the services, and

execute its tasks,

 The mobile agent returns to its home with the mission

result.

The flexibility of mobile agents, their autonomy, their

mobility, their adaptability on the network make them

powerful in solving complex problems. However, agent

mobility and autonomy pose security issues in distributed

environments. When an agent moves, it is crucial to

ensure that it will be executed correctly and safely on the

new visited system. Similarly, it is crucial to reassure the

Manuscript received August 23, 2019; revised February 10, 2020.

We choose the name SOS for this agent to show that it will be

triggered as a distress signal and request assistance.
Corresponding author email: Sophia.alami.kamouri@gmail.com.

doi:10.12720/jcm.15.3.221-230

receiving system that there will be no risk of hosting a

new agent.

In this paper, we focus on the security of mobile agents.

The proposed security model is based on a bi-

dimensional approach to provide a desirable mobile

agents security issues in different levels. To meet the

safety requirements, we proposed two security

mechanisms:

 We have adopted the cryptographic trace to ensure

mobile agent integrity and origin authentication

during its migration from one platform to another.

The visited platform could, once the mobile agent

arrives, proceed with the verification of its

cryptographic trace, to authenticate it and to retrieve

the message.

 In addition, we proposed the SOS
1

agent model

which aims to protect the agent against malicious

hosts and DOS attacks and then ensure system

availability. Its role is to watch over the mobile agent

security by monitoring its movements through the

visited platforms using a timer. If the agent performs

its mission before the timer expires, it must send an

acknowledgement to the SOS agent before moving to

the next platform, confirming that is safe and its

mission was successfully accomplished. Our SOS

agent, unlike existing models, remains in the home

platform, which is the most secure one. If the timer

exceeded and no message was received from the

mobile agent, the SOS agent identifies the actual

visited platform as malicious and adds it to its

blacklist, then sends a new agent with the

accumulated data to terminate the mission.

By these two mechanisms, we are able to ensure

mobile agent integrity, availability and origin

authentication.

The paper is organized as follows: Section II studies

the security issues facing Mobile Agents, the security

threats and the security requirements. Section III exposes

some existing approaches to protect mobile agents.

Section IV describes our proposed model to protect our

mobile agents. In section V, we implement our proposed

SOS agent approach and test several scenarios to prove

the validity and feasibility of our approach against

malicious hosts and DOS attacks. Finally, the paper is

concluded in Section VI with a discussion about the

proposed approach.

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

221

II. MOBILE AGENTS SECURITY ISSUES

A. Security Threats

The security problem is a hindrance to the expansion

of this technology. A mobile agent can be targeted by

several types of attacks since it moves from one system to

another that may not be secure. That's why the security of

mobile agent-based systems can be handled in four plans:

 Security between two agents,

 Security between the agent and its execution platform,

 Security between two machines,

 security between an agent and an external speaker.

Indeed, there are 4 categories of security threats [1]:

 Agent against Agent Platform: this category

represents all the threats in which the agents exploit

the security weaknesses of an Agent Platform or

launch attacks against it. An incoming agent has two

main lines of attack. The first is to gain unauthorized

access to information residing at the agent platform;

the second is to use its authorized access in an

unexpected and disruptive fashion. Unauthorized

access may occur simply through a lack of adequate

access control mechanisms at the platform or

masquerading as a platform-approved agent. Once

access is gained, information can be disclosed or the

platform-resident information, including instruction

codes, may be altered.

 Agent Platform against Agent: represents all the

threats in which the platforms compromise the

security of the agents. A receiving agent platform can

easily isolate and capture an agent and may attack it

by extracting information, corrupting or modifying its

code or state, denying requested services, or simply

reinitializing or terminating it completely.

It may be corrupted merely by the platform

responding falsely to requests for information or

service, or delaying the agent until its task is no

longer relevant.

 Agent against other Agents: is the set of threats in

which agents exploit the security weaknesses of other

agents or launch attacks against other agents. An

agent can target another agent using several general

approaches. These include actions to falsify

transactions, eavesdrop upon conversations, or

interfere with an agent's activity. For example, an

attacking agent can respond falsely to direct requests

it receives from a target or even deny that a legitimate

transaction has occurred.

 Other Entities against Both: represents all the set of

threats in which external entities such as other agents

and other platforms, threaten the security of both the

internal agents and the agent platform. Even assuming

the last ones have good behaviors, other entities both

outside and inside the agent framework may attempt

actions to disrupt, harm, or subvert the agent

framework.

The obvious methods involve attacking the inter-agent

and inter-platform communications through

masquerade, (e.g., through forgery or replay) or

intercept.

B. Security Requirements

Generally, a secure mobile agent system must achieve

the following security objectives:

 Authentication: is the process of verifying the

identity of a user, device, or entity before allowing

access to a system's resources to prevent it from

faking or masking information. A mobile agent must

authenticate to each visited agent system and

therefore an agent system is able to decide whether it

is a trusted agent. In the same time, the mobile agent

must be able to authenticate the agent system.

 Authorization or Access Control: the process of

granting or denying a request from a user or a

program or entity after confirmation of authentication.

 Confidentiality: requires that during the exchanges in

a system, the data must be protected against

unauthorized disclosure and that only the entities to

which they are entitled may access it. The mobile

agent and the agent system must protect their private

information against unauthorized access.

 Anonymity: the security policies of the agent

platform and their audit requirements must be

carefully weighed against Agents' expectations of

confidentiality. In this case, the platform must

maintain secret the identity of the agent with respect

to other agents.

 Availability: includes the availability of data and

services from a mobile agent so that legitimate users

can access data and systems in a timely manner. This

property ensures accessibility to resources and / or

services as long as it is an authorized agent.

 Integrity: divided into two parts: data integrity and

system integrity. Data integrity means that data must

not be tampered with or destroyed in an unauthorized

manner to maintain consistency. The integrity of the

system means that a system should be free from

unauthorized manipulation. In the context of mobile

agents, the agent's route is a datum that requires

protection against all forms of alteration.

The agent platform must protect agents against

unauthorized modification of their code, execution

status and data and ensure that only authorized agents

or processes make changes to the shared data.

 Non-repudiation: means that each user and entity

must not deny the communication made later. To do

this, important communication exchanges must be

recorded to prevent refusals of part of a transaction. It

relies on authentication to register the identities of the

entities.

 Assurance: reasons for confidence that other security

objectives (including integrity, availability,

confidentiality and non-repudiation) are adequately

achieved through a specific implementation. This

includes a feature that works correctly, a sufficient

protection against unintentional errors (by users or

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

222

software) and a sufficient resistance to intentional

penetration or bypass [1]-[8].

 Fairness: no party can have any advantage over the

other parties. Thus, mechanisms are needed to ensure

a fair interaction of the agent platform in the

electronic exchange.

We will focus, in this paper, on the confidentiality,

integrity, non-repudiation and authentication.

III. EXISTING APPROACHES TO PROTECT MOBILE AGENTS

Mobile agents are subject to many threats as they move

and execute on another environment that is controlled by

another mobile agent platform different from the one that

created it. This is why different security requirements

must be generated in a system to achieve the security

objectives.

The mobile agent’s technology has several advantages,

such as the ability of the mobile agent to move and

migrate from one machine to another to get closer to

remote resources. A mobile agent has the ability to clone

itself so that it can run in parallel across multiple systems

at the same time and also its ability to communicate with

other agents to share their knowledge and expertise.

Despite these advantages, if the security aspects are not

taken into consideration, this technology can quickly

become destructive.

The platform from which an agent originates or is

created is known as the home platform and is usually the

most reliable. Once the mobile agent migrates to another

environment, this new environment is called the host

environment and takes full control over the agent's code,

data state, and execution state. This makes it difficult to

protect mobile agents from malicious hosts and exposes

them to multiple security threats.

In the following, we will describe some mechanisms

and solutions proposed in the literature to protect mobile

agents.

a) Securing mobile agent based systems against

malicious hosts: in this article [2], the authors

discuss in general terms the security of mobile

agents against malicious hosts. This work provides

a solution against DOS attacks launched by a

malicious host that blocks a Visitor Mobile Agent

and prevents it from continuing its itinerary.

This approach uses two mobile agents: a primary

agent denoted PA and a shadow agent denoted SA.

The mechanism uses an acknowledgement and

timing mechanism to ensure that a mobile agent

has visited a host in its itinerary and has gone

safely to the next. A host is considered non-

blocking if it allows the PA to continue its task

and to leave safely to the next host. The SA

suspects malicious action if it does not receive an

acknowledgment within an appropriate time, after

which it requests help from the primary host to

identify the malicious host and takes corrective

action.

When the local host identifies the malicious host,

it sends a new instance of the security authority to

a secure host to meet SA that carries a copy of the

collected data. SA will reload the data collected in

the blank PA. The newly loaded PA will continue

its route by ignoring the malicious host.

In this work, the issue that arises is that the SA

once it will migrate to another platform it can be

an attack target.

b) Using Secure-Image Mechanism to Protect

Mobile Agent against malicious Hosts (SIM):

the Secure-Image Mechanism (SIM) proposed by

[3] aims to protect mobile agents against

malicious hosts, eavesdropping and alteration

attacks.

The operation of SIM is as follows: a mobile agent

in SIM migrates from one host to another

following an itinerary to perform his task. The

mobile agent is encrypted when it moves from one

host to another to protect the mobile agent in

communication channels. The mobile agent is

decrypted when it arrives to the host. Therefore,

some parts of the mobile agent may face security

problems if the host is untrusted. From this point,

the importance of SIM comes to protect all parts

of the mobile agent in untrusted hosts.

SIM generates a secure image for the mobile agent

before it arrives at hosts that are classified as

unreliable hosts. If the next host in the agent’s

itinerary is untrusted, the agent visits the near

Secure-Image Controller (SIC) which generates a

secure image of the agent and sends it to the

untrusted host. This protects the original agent

from visiting malicious hosts.

The weak point of this solution is that the trusted

and untrusted hosts should be known which is not

always the case in distributed systems.

c) On Mobile Code Security: Sander et al [4]

provide computing with features encrypted using

non-interactive computer method, with CEF

(Computing with Encrypted Functions) as a

solution created for mobile code security

requirements.

The purpose of this proposal is to encrypt

functions so that their transformation can again be

implemented as programs. The resulting program

will consist of clear text instructions that a

processor understand, but it will not be able to

understand the function of the program.

Although some theoretical results related to the

CEF have been produced near the computing with

encrypted data, these results seem to be

impractical as regards to their computer feasibility

as well as their interactivity.

d) Time Limited Blackbox Security: Protecting

Mobile Agents from Malicious Hosts: in this

paper [5], Hohl introduces BlackBox security to

protect Mobile code against malicious hosts by

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

223

generating executable code from a given agent

specification. This generated code is executed by

the host as a BlackBox, i.e. the host cannot modify

or read it but can only execute it.

The use of Blackbox can be a major risk for the

host who will run it, since the latter cannot have

enough information about what it receives.

e) Extending execution tracing for mobile code

security: in this article [6], the authors aim to

protect the mobile agent's code against denial of

service and state tampering attacks caused by

malicious hosts. They proposed an approach based

on the extension of the cryptographic trace

mechanism.

This approach involves a trusted third party,

verification server that undertakes the process of

verifying traces on behalf of the agent owner.

When an agent owner launches a mobile agent to a

host platform, it creates a copy of the agent's code

and state and forwards them onto a verification

server designated by the host platform.

While the host executes the agent, it creates a trace

of this execution simultaneously. Upon request of

migration, the host then forwards this trace and the

final agent state to the designated verification

server, which ensures that the execution sequence

is valid. Once a verification server receives an

agent copy, it will be aware of the identity of the

platform executing the actual agent.

It can thus implement a mechanism to ensure that

a trace of the execution arrives from the required

host within a reasonable time. This provides a way

to safeguard against some forms of denial of

service attacks.

The concern of the authors on this approach is to

ensure that the traces, the code of the agent and

the agent status propagated securely in their

system, and that the traces are correctly associated

with the corresponding agents. Among the

disadvantages of this work, there is the high cost

of cryptography. The researchers should try to find

ways to reduce the cryptography cost of the

protocol used without compromising security

properties.

Table I below is a comparison between the existing

solutions regarding the security mechanisms they used

and the security objectives they achieved. We can see

clearly that no solution is ensuring at the same time the

confidentiality, the integrity, the non-repudiation and the

availability.

TABLE I: COMPARATIVE TABLE BETWEEN THE EXISTING SOLUTIONS

After discussing related work about mobile agent’s

security their advantages and disadvantages, we will

present in the next section our proposal for the safety of

mobile agents and their environments to ensure system

integrity, data confidentiality and non-repudiation, in

addition to agent protection against malicious platforms

and DOS attacks to ensure system availability.

IV. PROPOSAL OF A NEW MOBILE AGENT SYSTEM

SECURITY MODEL

Our solution focuses on protecting agents from

malicious agent attacks, malicious platforms and to

ensure the integrity of the system. We therefore suggest a

bi-dimensional approach to deal with security threats in

our system. Our proposal describes two security

mechanisms: the cryptographic trace and the SOS agent.

A. Proposed Cryptographic Trace

The security of the mobile agent and its code is

paramount, as malicious agents can attempt to gain

unauthorized access to the host, or malicious hosts can

extract confidential information embedded in the agent

and use it afterwards. Cryptographic trace or tracing

execution consists of a sequence of statement identifiers

of instructions and platform signature information. It is

composed of a sequence of pairs (n, s), where n

represents unique identifiers and s is the signature.

The signature of the platform is necessary only for the

instructions that depend on interactions with the

computing environment. For instructions that rely solely

only on the values of internal variables, a signature is not

required and, therefore, is omitted [9].

The cryptographic trace is one of the methods that

ensure effective security and data transmission. We use

the cryptographic trace so that local agent that created

and sent the LightWeight (LW) agent can trace its

movements and itineraries. Keeping this trace, we will

know the path made by the latter and be sure that there is

no agent identity usurpation.

In our proposal, we assume that each host has a private

key denoted Ks and a public key denoted Kp that will be

used during the encryption and decryption of messages

and signatures. As show in Fig. 1, our LW agent migrates

from the initial platform H0 to the platform H1, then to

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

224

H2... Hn to achieve its mission and returns to the original

platform H0 which created it.

Fig. 1. Explanatory diagram of LW agent data transmission.

The message encapsulated by the mobile agent consists

of a code to execute in addition to the identifiers, the

cryptographic trace and the hash to ensure non

repudiation and integrity.

Once the LW agent is launched and received his

mission, it migrates from platform H0 to platform H1

with the following message:

msg0 = id H0, @IP H0, @IP H1, Hash0, Tc0,

EncryptKp1(data0)

The sent message msg0 contains the following

parameters:

 id H0 : the identifier of the transmitter platform.

 @IP H0 : the IP address of the transmitter platform.

 @IP H1 : the IP address of the receiver platform.

These first three entities specify that the message

comes from H0 and is directed to H1.

 Hash0 = HashKs0(idH0, id LW agent) : the hash of

the unique identifier of the LW agent and the

identifier of the initial platform H0 with the H0 agent

secret key.

This Hash0 parameter is sent in each message, in

order to be checked at the end of the agent’s itinerary

by the initial platform to show it is the LW agent that

has been deployed in the beginning of the mission.

Hash0 is also used to calculate the cryptographic trace.

 Tc0=SignedKs0(idH0, @IP H0,@IP H1, Hash0) : the

cryptographic trace which is the sign of the id and the

IP address of H0, H1’s IP address and hash0 with the

secret key of H0. This cryptographic trace shows that

this message comes from platform H0 and destined to

platform H1. Once H1 verifies this thanks to this

cryptographic trace, the platform proceeds to the

decryption of the data and the execution of the agent

code.

 EncryptKp1(data0) : the data sent in the message is

encrypted with the public key of the platform H1.

This data will be decrypted by the private key of the

platform that received the message, here H1.

Within the Platform H1 :

 Once the platform H1 receives the message msg0, it

processes to the verification of cryptographic trace to

know the source of message and whether it is destined

to this platform or not.

 Cryptographic trace Tc0 as we saw above is the sign

of the id and IP address of H0, H1’s IP address and

hash0 with the secret key of H0. So for the

verification, the platform H1 decrypts this trace with

the public key of H0 to make sure of the origin and

destination of the message.

 When the cryptographic trace verification is

conclusive, the platform processes the encrypted data

sent in the msg0. The platform decrypts

EncryptKp1(data0) with its private key and then the

agent accomplishes its mission in this platform.

Once the data processing is done, LW agent will send

the result of the processed data (data1) to the SOS

Agent with the message ”go to the next”, as we will

see in the second part of our approach (next

subsection).

LW agent migrates from platform H1 to H2 with

message msg1 containing the following parameters: msg1

= id H1, @IP H1, @IP H2, Hash0, Tc1, Tc0, Encrypt

Kp2(data1)

 The first three entities id H1 , @IP H1 , @IP H2

specify that the message comes from H1 and is

directed to H2.

 Hash0 as explained above, it is sent in each message

to be verified at the end by the original platform.

 Encrypt Kp2(data1) : data is encrypted with the

public key of the platform H2. This data will be

decrypted by the private key of the platform H2 that

will receive the message.

 The cryptographic trace Tc1 = SignedKs1(idH1, @IP

H1,@IP H2, Hash0, Tc0) is verified by the platform

that receives the message.

 The cryptographic trace Tc0: is added in both Tc1 and

msg1. It is added to the H1 signature to ensure the

system integrity and it is added to msg1 to allow H2

to do the verification of the signature.

To generalize this process, we present the case of

platform Hi and Hi+1 where 0 < i ≤ n.

Between Platform Hi and Hi+1:

The same steps outlined above are followed up to the

platform Hi, where the message is the following :

msgi = id Hi, @IP Hi, @IP Hi+1, Hash0, Tci, Tci-1,

EncryptKpi+1(data i) and the cryptographic trace is :

Tci = Signed Ksi(id Hi, @IP Hi, @IP Hi+1, Hash0,

Tci-1)

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

225

When the LW agent completes his mission, it returns

to the initial platform with the execution result.

Between Platform Hn and H0 :

Hn sends the following message msg n to H0 :

msg n = id Hn, @IP Hn, @IP H0, Hash0, Tcn, Tcn-1,

EncryptKp0(data n)

Within the Platform H0 :

 The Platform H0 checks the cryptographic trace Tcn

to know the emitter of the message and the recipient,

in the same way explained before:

Tcn = SignedKs0(idHn, @IP Hn,@IP H0, Hash0,

Tcn-1)

 Then, the second step is to check the Hash0. This

parameter included in every message along the

agent’s itinerary that is verified once the initial

platform receives the final message to ensure the

integrity of the system.

 Hash0 = HashKs0(idH0, id LW agent) : the hash of

the unique identifier of the LW agent and the

identifier of the initial platform H0 with the secret key

H0.

 When the platform receives the Hash0, which is a 32-

bit value or a 64-bit value according to the hash

function used, it calculates the expected one from the

Identifier of the home platform and the identifier of

the LW agent using its secret key. Then, it compares

he received value with the calculated one.

If both values are identical, the information and code

sent haven’t been changed or modified throughout the

agent’s itinerary.

 Then, H0 decrypts the received data EncryptKp0(data

n).

After presenting the proposed method for

cryptographic trace to ensure the mobile agent

integrity and origin authentication, in the next

subsection, we will introduce a new mechanism to

track the agent migration to avoid DOS attacks and to

ensure system availability and the proper functioning

of the agent.

B. SOS Agent Mechanism

In a typical multi-agent system, each platform uses two

special agents: a Local Agent (LA) and a Lightweight

Agent (LW). The Local Agent creates and assigns

missions to the Lightweight Agent. The latter (LW)

migrates from the home platform H0 to other platforms

H = {H1, H2 ... HN} as seen before, and looks for the

desired information according to the assigned missions.

Once the task is completed, the LW agent returns to the

home platform. During its trip, one or more hosts in the

specified itinerary could be malicious and would block

the LW agent.

Even if we have proposed the cryptographic trace

mechanism to ensure data integrity, to know LW agent

itinerary and to be sure that there is no agent identity

usurpation, we still need to ensure mobile agent

availability by avoiding DOS attacks.

Indeed, our proposed model focuses on detecting

denial of service attacks on LW agents when they migrate

to perform an assigned task. Precisely, it uses a new agent

called SOS agent which uses the same acknowledgement

and time-out concept as used in the SA agent to monitor

the movements of the PA agent in the paper [2]. The

main difference is that, instead of lagging one or two

steps in the itinerary behind the PA, our SOS agent will

stay in the home platform, the most secure platform for a

mobile agent, and monitor the movements of the LW

agent. Using this approach, the SOS agent will not be a

target of attack as it was the case with the shadow agent.

When the LA assigns a task to the LW agent:

1) the LW agent will start its itinerary (Hi, i=0 ... N)

while the SOS will stay in the home host H0.

2) When the LW completes its task in Hi, it sends

an acknowledgement to the SOS agent along

with the result of its execution in Hi

EncryptKp0((datai)) and the accumulated data.

The idea is that the LW agent sends an

acknowledgement each time it finishes its task at

a new host.

3) Next, the agent will move to the next one Hi+1.

4) If the SOS agent receives the acknowledgement,

then we can assume that Hi is considered non-

blocking, that the task has been executed safely

and the agent can move to the next host Hi+1. In

this case, the SOS agent will recalculates the

timer based on the location of the next host in

order to monitor the newly visited host and waits

again for the new acknowledgement with the

new accumulated data.

5) Contrarily, if the specified timer used by the

SOS agent expires, and since we already know

that Hi-1 is considered non-blocking because we

have already received the previous

acknowledgement (using the same logic), then

we know for sure that the host Hi is malicious

and necessary corrective measures must be taken.

With this approach, the SOS agent can exactly identify

and blacklist the malicious host. That is, when the home

host launches a new instance of the LW agent, the latter

will receive the accumulated data from the SOS agent and

migrate directly to the last visited non-blocking host Hi-1,

but this time it will skip the malicious host according to

its blacklist, the host Hi, and resume its trip in the

remaining part of the itinerary starting with Hi+1.

It is important to note that since the SOS agent stays in

the home host (the most secure host), the integrity of the

accumulated data is protected from any modification or

reverse engineering [11]. In addition, we have used a

different interpretation of the acknowledgement and time

out concept: The SOS agent uses a timer T to check

whether the LW agent has executed its task safely in the

current host before migrating to the next instead of

checking whether the shadow agent will be blocked by

one of the two destination hosts before performing the

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

226

task [2]. This difference gives the advantage of

identifying and blacklisting exactly any detected

malicious host.

Fig. 2 shows the operation of SOS agent:

1) Local agent, LW agent and SOS agent are

launched, each one with its mission.

2) LW agent migrates to platform Hi to execute his

task.

3) The SOS agent is waiting for the message from

the LW agent using a timer T. After this step,

two scenarios are possible:

4) Case1: If SOS agent receives the message ”Go

to the next” from LW agent and Encrypt(data).

This means that its mission went well at current

host. SOS agent recalculates the timer and waits

again for its message.

5) Once LW agent sends ”Go to the next” to the

SOS agent, it migrates to the next platform to

complete his task, and so on.

6) Case 2: If the timer has elapsed and the LW

agent did not send a message, the SOS agent

sends an alert to the local agent to deploy a new

LW agent. If a late LW answer comes after the

timer T, it will be ignored.

Fig. 2. Interaction between SOS agent and LW agent.

In the next section, we will describe the

implementation and analyze in detail our SOS agent

approach.

V. SOS AGENT APPROACH IMPLEMENTATION

The purpose of the SOS agent approach is to detect the

denial of service attack by a malicious host that blocks a

visiting mobile agent and prevents it from continuing its

route/itinerary. To do this, we have implemented our

proposed approach using Java Agent DEvelopment

Framework or JADE 4.5.0 platform [12].

During the implementation, many scenarios were

tested from the most trivial case where all hosts are

considered non-blocking to end up with multiple

malicious hosts. In all these scenarios, the SOS agent was

able to detect all of the simulated malicious hosts,

allowing the LW agent to skip all of them and only visit

those who do not block. This gives confidence in the

validity and shows the feasibility of the proposed

approach.

A. DOS Attack Simulation

In order to simulate a DOS attack performed by a

malicious host, we used ACL messages with specific

responses and requests exchanged between the LW agent

and a LA of each visited host.

 When the LW agent migrates to a host Hi to execute

an assigned task, it sends a “Hello” request to the Hi

Local Agent.

 If the host Hi is malicious, then its Local Agent

will respond with an ACL message with the content

“Malicious”, and then the LW agent will simply

terminate. In a real case scenario, the LW agent will

terminate due to a malicious action from the

malicious host or platform.

 Otherwise (if the host Hi is friendly), the Hi Local

Agent will send a “Friendly” ACL message, in this

case the LW agent will execute normally and resume

its itinerary thereafter.

 It is the role of the SOS agent to detect each and every

malicious host in the environment.

B. Use Case Study

Following is a use case to explain the SOS approach

operation. In this example, the LW agent moves in an

itinerary of eight simulated hosts H1 to H8. As shown in

Fig. 3, the hosts H2, H3, H5 and H7 are malicious hosts

while the rest are non-blocking hosts.

Fig. 3. Simulated environment.

In this example, the following scenario is simulated :

 In the home host H0, two agents SOS and Local

Agent are initially created.

 The LA deploys a new mobile agent LW agent with a

specific task to execute and some additional

information (e.g. the itinerary). The SOS agent always

stays at H0 and LW agent departs to visit H1.

 The SOS agent waits for an acknowledgement from

the LW agent when it finishes executing in H1 and

before departing to H2. The SOS agent uses a timer T

that is calculated based on the location of the LW

agent and the execution time of the assigned task. The

time T should be long enough to receive an

acknowledgement if there is no malicious action.

 Once the LW agent finishes its task, it will send an

acknowledgement to the SOS agent, and moves to H2.

 If the SOS agent receives the acknowledgement

before timer T expires, this means that host H1 is not

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

227

malicious host and LW agent is moving to H2. The

SOS agent recalculates the timer T accordingly.

 The host H2 being malicious, it will block LW agent

and terminate its execution. Therefore the LW agent

cannot send the acknowledgement.

 When the timer T expires, SOS agent will decide that

H2 has blocked the LW agent. In this case, it will

send a request to the Local Agent stating that the LW

agent is blocked in H2 and the last visited non-

blocking host is H1.

 At this point, H0 will create a new LW agent instance

with the new itinerary {H1, H3 ... H8} ignoring the

malicious host H2.

 When the new instance of the LW agent arrives to the

last visited non-blocking host, which is H1 according

to the accumulated data, the LW agent will re-send

the acknowledgement to SOS stating that H1 is non-

blocking and it is moving to H3. In this case, the SOS

agent will set its timer T to be ready for receiving the

next acknowledgement when LW agent finishes its

task in H3.

 The host H3 is malicious, so it will block the LW

agent. The exact scenario will continue to detect and

skip each malicious host until the LW agent

eventually reaches H8 and returns to the home host

H0.

Our approach has the main advantage of exactly

identifying a potential malicious host using timers and

acknowledgements. The SOS agent works according

to the Algorithm 1 below:

Algorithm 1. General Algorithm for the SOS agent.

The LA of H0 handles the deployment of the LW

agents. It uses the steps shown in Algorithm 2.

Algorithm 2. General Algorithm for the Local agent of H0.

We have customized our SOS agent with graphic user

interface to monitor its behavior. This graphic interface

provides the following information (see Fig. 4):

Fig. 4. Interface of the SOS agent.

 All sources / hosts available in the environment.

 A blacklist containing the list of malicious hosts

detected so far.

 The contents of ACL messages sent by the LW agent

(in this case it’s: Going to next: the id of the last

visited host.)

 A button to deploy the LW agent: when this button is

pressed, the SOS agent will send a request to the LA

of the home host H0 to deploy a new LW agent. This

button is only pressed once.

Fig. 5. Console of the SOS agent.

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

228

In this use case, the simulated LW agent succeeded to

visit all non-blocking hosts and skip all malicious ones.

The LW agent started its journey from the home host H0

and successfully returned back to it as depicted in Fig. 5.

The Fig. 5 also shows that the SOS agent keeps track

of the malicious hosts detected so far and also the list of

the non-blocking hosts (labelled “good hosts”). Thus,

whenever a LW agent is terminated by a malicious host,

the SOS agent will deploy a new LW agent with the

accumulated information as described before to help the

new agent skip the malicious host.

VI. CONCLUSION

In this article, we focused on the security aspect of

mobile agents when communicating and migrating to

other hosts to get closer to remote resources. Our main

goal is therefore to provide a desirable security to mobile

agent-based systems. We have described the threats and

security requirements faced by mobile agent technology.

We have also presented some related work and

highlighted some of their advantages and disadvantages.

Although there are several security mechanisms and

techniques to ensure the security of mobile agents, we

found that still some important security issues are missing.

Next, we have introduced our proposed approach

where we addressed important security requirements. To

improve the security profile, we have taken into account

attacks like DOS attacks. We have adapted the use of the

cryptographic trace to guarantee the system integrity

during the migration of the agent and to be sure that there

has been no identity theft.

In our security approach, we also created an agent

called SOS agent that is launched in the initial platform to

monitor the LW agent when moving to another host. The

SOS agent uses acknowledgements and a waiting period

to avoid DOS attacks. This approach has been

implemented and tested in a case study.

As we can see, the mechanisms that have been

proposed ensure:

 The integrity of the system in addition to the

authentication of the origin thanks to the use of the

cryptographic trace which contains information about

the emitter and the receiver of the message.

 The non-repudiation that is ensured by the signature.

 Data confidentiality using asymmetric encryption.

 The availability of the system and protection against

DOS attacks thanks to the proposed SOS agent

mechanism.

Each time the agent migrates from one platform to

another, the SOS agent launches a timer and waits for

an acknowledgement from the LW agent that must

send also the result of its mission in the actual

platform.

If the timer expires without receiving the LW agent

acknowledgement, the SOS agent informs the local

agent to start a new one and follow his itinerary.

In the following table, we give a comparison between

the existing models and our proposed approach.

TABLE II: COMPARATIVE TABLE BETWEEN THE EXISTING SOLUTIONS

AND OUR PROPOSITION

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

S. Alami-Kamouri proposed the new Mobile agent

security model based on the cryptographic trace and the

SOS agent mechanim.

N. Moukafih contributed to the improvement of the

SOS agent mechanism and its implementation in JADE

Plateform.

Pr. G. Orhanou and Pr. S. El Hajji supervised the

research work, discussed the different security and

technical aspects related to the proposed model, and give

directions that helped to achieve the objectives.

All authors approved the final version and helped

shape the research.

REFERENCES

[1] W. A. Jansen, “Mobile agents and security,” in National

of Standards and Technology Gaithersburg, MD 20899,

Special publication 800-19, USA, 1998.

[2] M. A. Madkour, F. E. Eassa, A. M. Ali, and N. U.

Qayyum, “Securing mobile-agent-based systems against

malicious hosts,” World Applied Sciences Journal, vol. 29,

no. 2, pp. 287-297, 2014.

[3] T. M. Ahmed, “Using secure-image mechanism to protect

mobile agent against malicious hosts,” International

Scholarly and Scientific Research and Innovation, vol. 3,

no. 11, pp. 364-369, 2009.

[4] M. Hefeeda and B. Bhargava, “On mobile code security,”

Center of Education and Research in Information

Assurance and Security, 2001.

[5] F. Hohl, “Time limited blackbox security: Protecting

mobile agents from malicious hosts,” in Mobile Agents

and Security, Lecture Notes in Computer Science 1419,

Springer-Verlag, Berlin, 1998, pp. 92-113.

[6] H. K. Tan and L. Moreau, “Extending execution tracing

for mobile code security,” in Proc. Second International

Workshop on Security of Mobile Multi Agent Systems,

Italy, 2002.

[7] S. Srivastava and G. C. Nandi, “Fragmentation based

encryption approach for self protected mobile agent,”

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

229

Journal of King Saud University – Computer and

Information Sciences, vol. 26, pp. 131–142, 2014.

[8] P. Dadhich, K. Dutta, and M. C. Govil, “Security issues in

mobile agents,” International Journal of Computer

Applications, vol. 11, no. 4, 2010.

[9] G. Vigna, “Cryptographic traces for mobile agents,” in

Proceeding Mobile Agents and Security Springer-Verlag,

UK: London, 1998, pp. 137-153.

[10] S. Alami-Kamouri, G. Orhanou, and S. Elhajji, “Mobile

agent service model for smart ambulance,” in Proc. 2nd

EAI International Conference on ICT Infrastructures and

Services for Smart Cities Brindisi, Italy, April 2017.

[11] M. Popa, “Binary code disassembly for reverse

engineering,” Journal of Mobile, Embedded and

Distributed Systems, vol. 4, no. 4, pp. 233-248, 2012.

[12] F. Bellifemine, G. Caire, and D. Greenwood, Developing

Multi-agent Systems with JADE, Chichester, England

Hoboken, NJ: John Wiley, 2007.

[13] N. Bouchemal and R. Maamri, “CAPMA: Clone agent to

protect mobile agents in dynamic environments,” in Proc.

International Conference on Advanced Aspects of

Software Engineering, 2016.

[14] C. Zraria, H. Hachichab, and Khaled Ghediraa, “Agent’s

security during communication in mobile agents system,”

in Proc. 19th International Conference on Knowledge

Based and Intelligent Information and Engineering

Systems, 2015.

[15] X. Vila, A. Schuster, and A. Riera, “Security for a multi-

agent system based on JADE,” Computers and Security,

vol. 26, no. 3, pp. 91–400, 2007.

[16] L. M. Tsai and J. Tsai, “Formal modeling and analysis of

a secure mobile-agent system,” IEEE Transactions on

Systems, Man, and Cybernetics – Part A: Systems and

Humans, vol. 38, no. 1, 2008.

[17] S. Hanaoui, J. laassiri, and Y. Bergui, “Security

requirements and model for mobile agent authentication,”

Smart Network Inspired Paradigm Approaches in IOT

Applications, pp. 179-189, July 2019.

[18] T. Bayer and C. Reich, “Security of mobile agents in

distributed java agent development framework (JADE)

platforms,” in Proc. Twelfth International Conference on

Systems, Venice, April 2017.

Copyright © 2020 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Sophia Alami-Kamouri, Phd student in Laboratory of

Mathematics, Computing and Applications - Information

Security, Faculty of Sciences, Mohammed V University in

Rabat, Morocco. He received a Master degree in Cryptography

and Security of Information from Faculty of science of Rabat, in

2014. Her research interests include the use of mobile agent

paradigm in smart environment. She is interested also in

information security.

Nabil Moukafih, Phd student in Laboratory of Mathematics,

Computing and Applications - Information Security, Faculty of

Sciences, Mohammed V University in Rabat, Morocco. He

received a Master degree in Cryptography and Security of

Information from Faculty of science of Rabat, in 2016. His

main research interest is on event correlation and normalization

using artificial intelligence approaches, SIEM, Mobile agent

paradigm.

Ghizlane Orhanou, Associate Professor in Faculty of Sciences

and member of the Laboratory of Mathematics, Computing and

Applications – Information Security, Mohammed V University

in Rabat, Morocco since 2013. She received PhD degree in

Computer sciences from the Mohammed V University in Rabat

in 2011 and the Habiltation to direct theses in 2016 from the

same University. She received in 2001 a Telecommunication

Engineer diploma from Telecommunication Engineering

Institute (INPT-Morocco) and worked for about 3 years as a

GPRS and Intelligent Network Engineer, and for 9 years as

System and Network Security Engineer. Her main research

interests include network and information systems security.

Said Elhajji, Professor. He graduated from Pierre and Marie

Curie University (Paris VI, France) and received his PhD from

Laval University in Quebec (Canada). He was associate

professor at "Ecole Normale Supérieure" of Rabat then, and

until 2018, he was professor at Faculty of Sciences, Mohammed

V University in Rabat, Morocco. He was the director of the

Laboratory of Mathematics, Computing and Applications-

Information Security (LabMIA-SI) from 2005 to 2018, and also

the responsible of the Master Cryptography and Information

Security (CSI). His research interests include Modeling and

Numerical Simulation, Numerical Analysis, Operating Systems

and Networks Security, Information Security, Management of

Information Security.

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

230

