
Machine Learning and an Eigenvalue-Based 

Technique to Improve Cooperative Spectrum 

Sensing in Generalized α-κ-μ Fading Channel 
 

Srinivas Samala*, Subhashree Mishra, and Sudhansu Sekhar Singh 

School of Electronics Engineering, KIIT Deemed to be University, Bhubaneswar, Odisha, India 

Email: srinu486@gmail.com (S.S.); subhashree.mishrafet@kiit.ac.in (S.M.); ssinghfet @kiit.ac.in (S.S.S.) 

*Corresponding author 

 

 

 
Abstract—As the demand for radio spectrum continues to rise, 

one possible approach to addressing the problem with limited 

spectrum is cognitive radio. The most important aspect of 

effective cognitive radio implementation is spectrum sensing. 

In this context, we propose and examine the effectiveness of a 

K-means and eigenvalue-based learning method for 

Cooperative spectrum sensing in an α-κ-μ generalized fading 

channel. To measure how well the proposed method is 

working, we utilize receiver operating characteristic curves. 

In addition, a comparative analysis is performed with 

existing detection techniques like cooperative spectrum 

sensing using K-means-based energy detection specifically 

designed for κ-μ and α-κ-μ fading channels. Based on the 

findings of the MATLAB version of the simulation, the 

proposed approach is superior to an existing one in terms of 

comparison parameters. 

 

Keywords—cooperative spectrum sensing, eigenvalues, K-

means, detection probability 

 

I. INTRODUCTION 

The deficiencies of the existing approach to frequency 

spectrum allocation have become apparent through 

empirical findings, as it depends on a centralized command 

and control framework. The aforementioned observations 

have revealed that a significant proportion of the 

designated spectral bands frequently go unutilized [1]. To 

overcome this inefficiency and make better use of the 

scarce resources of the spectrum, Cognitive Radio (CR) 

technology has emerged. During times when the Primary 

Users (PUs) are not actively using licensed spectrum bands, 

CR technology permits Secondary Users (SUs) to make 

efficient use of these bands. However, to accommodate the 

occasional need for spectrum access by Primary Users 

(PUs), it is imperative for unlicensed users to consistently 

monitor the operations of PUs and swiftly vacate the 

frequency band when PUs begin re-transmission. The 

Detection of Primary Users (PUs), whether they are 

present or not, is an essential aspect in the efficient 

implementation of Cognitive Radio (CR) systems, often 

referred to as spectrum sensing. The primary objective of 

this unique approach is to enhance the efficiency of 

spectrum utilization while concurrently assuring fair and 

equal access for users with and without licenses [2]. 

In α-k-µ fading channels, this work provides a novel 

method for cooperative spectrum sensing. The suggested 

approach uses K-means clustering and eigenvalue-based 

approaches to increase the accuracy and reliability of 

spectrum sensing. To gain insight into the underlying 

channel conditions, we can use eigenvalue-based 

approaches that make use of the statistical features of the 

covariance matrix of the received signal. The widely 

utilized unsupervised learning method known as K-means 

clustering is employed for splitting the gathered data into 

separate clusters, enabling informed decision-making on 

spectrum occupancy [3, 4]. 

The primary goal of this work is to provide a 

cooperative spectrum sensing method that is adaptable to 

the dynamic and challenging α-k-µ fading channel 

conditions. This approach combines eigenvalue analysis 

and K-means clustering to reduce the impact of fading and 

noise on detection performance. The findings of this work 

are anticipated to aid in the development of cognitive radio 

systems that are more reliable and effective, enabling 

greater spectrum utilization in varying wireless situations. 

 The article is structured in the following way: 

Introduction to relevant literature in Section II, the 

implementation of the proposed approach is described in 

Section III, and finally, results and discussion are 

presented in Section IV.  

II. LITERATURE REVIEW 

Over the past decade, researchers have worked hard to 

develop spectrum sensing systems that maximize the 

usage of unused frequency bands while minimizing 

interference to Primary Users (PUs). Traditional spectrum 

sensing technologies possess several limitations. Energy 

detection is straightforward, but it is susceptible to noise, 

especially when the Signal-to-Noise Ratio (SNR) is low 

[5]. The utilization of matched filtering is considered to be 

best; however, it necessitates accurate knowledge 

regarding both the primary user signal and channel. Prior 

knowledge of Primary User (PU) signal characteristics is 
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required for cyclostationary detectors. These methods 

perform poorly in multipath and shadowed environments. 

These challenges can be conquered by employing 

cooperative Spectrum Sensing (CSS), which makes use of 

several sensors to leverage spatial diversity [6]. 

In recent times, several approaches centered around 

eigenvalues have been put forth to detect primary users in 

spectrum sensing applications. Giri and Majumder [7] 

introduced a novel approach to cooperative spectrum 

sensing by employing Eigenvalues and Kernel Fuzzy C-

means. The proposed model is trained and evaluated using 

test vectors constructed from eigenvectors extracted from 

the secondary user signal. Three different eigenvalue 

detection methods are used in cooperative spectrum 

sensing: energy with Minimal Eigenvalue (EME) 

detection, maximum Eigenvalue Detection (MED), and 

Maximum-Minimum Eigenvalue Detection (MMED). The 

superior performance of the proposed method in detecting 

available channels was established through a comparative 

analysis with existing eigenvalue methods.  

Yelalwar and Ravinder [8] trained a fusion center 

utilizing eigenvalue-based test statistics derived from the 

covariance matrix of incoming signals through the use of 

machine learning techniques in cooperative spectrum 

sensing. With a self-learning threshold, the system 

efficiently separates Primary User (PU) signals from noise 

signals in low SNR environments. Classifiers such as 

Naive Bayes, Extra tree, Gradient boosting machine, and 

SVM were used to evaluate if PUs were present in the band. 

Simulation experiments evaluating performance in various 

SNR conditions show that the suggested method 

outperforms traditional spectrum sensing techniques. A 

unique technique for spectrum sensing was presented in 

Ref. [9], specifically designed for receivers with multiple 

antennas. The method relies on knowledge of the signal’s 

cyclic frequency under consideration to detect the Primary 

User’s (PU) presence or absence. The received signals' 

cyclic covariance matrices are examined for eigenvalue 

correlations to arrive at this conclusion. Guo et al. [10] 

presented a novel methodology to discover the threshold 

eigenvalue to detect the existence of multiple Primary 

Users (PU) broadcasting simultaneously in a spectrum 

sensing circumstance. This approach presents a solution to 

the issue of spectrum sensing by eliminating the need for 

any prior information regarding the Primary User (PU), 

thereby effectively tackling the obstacle of blind detection. 

As a more realistic model of fading channels, the α-k-µ 

model has been proposed, because of the adaptability it 

provides for describing the wide range of channel 

conditions that can arise in practice. Within this framework, 

cooperative spectrum sensing has received a considerable 

amount of interest [11]. Cooperative sensing entails the 

collective detection of primary users by multiple 

secondary users, resulting in higher detection performance, 

increased resilience to fading, and improved utilization of 

the spectrum. 

III. PROPOSED METHOD 

Utilizing cooperative spectrum sensing that is based on 

eigenvalues in cognitive radio systems is one method for 

improving spectrum sensing's accuracy. This method takes 

advantage of the eigenvalues of the signals to ascertain 

whether or not the primary users are present in a fading 

channel. K-means clustering is used to classify the 

incoming signals based on their eigenvalues, which further 

improves the detection performance.  

Consider a system model with M SUs and PU, the 

channel between Primary Users (PUs) and Secondary 

Users (SUs) is assumed to exhibit α-κ-μ fading, which is a 

generalization of the Rayleigh and Nakagami-m fading 

models. Spectrum sensing is formulated as a Neyman-

Pearson and Bayes-based binary hypothesis testing 

problem as: 
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In the above equation existence of the PU signal is 

implied by H1, whereas its absence is shown by H0. The 

PU signal is denoted by xi(n), while white Gaussian noise 

is denoted by Gi(n) and N is the number of samples 

considered. Moreover, there is a hypothesis suggesting 

that the PU alternates between periods of activity and 

inactivity, allowing the channel's availability (Ac) to be 

stated as 
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In the preceding equation, S specifies the PU’s status, 

with S=1 representing the active state, the channel is 

unavailable, and S=0 showing the inactive state, the 

channel is available. According to Eq. (2), the probabilities 

of detection and false alarms can be formulated as: 

* *1 1 , 1 0d c c fa c cP A A P A A   = = = = = =
     (3) 

*

cA  denoted the predicted channel availability in the 

preceding equation.  

A. Realization of Eigenvalues 

The ability of eigenvalue-based detection to exploit the 

statistical properties of incoming signals makes it more 

efficient in cooperative spectrum sensing within cognitive 

radio networks. This approach effectively encapsulates the 

intrinsic structure and patterns present in the observed data, 

thereby increasing the ability to identify primary users. 

The eigenvalue-based detector offers a computationally 

effective way to optimize energy consumption during 

cooperative sensing, which makes it perfect for low-

resource cognitive radio systems [12]. 

In this context, s(n) denotes the signal received at SU, it 

is expressed as: 
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In the given equation, the variable βs denotes the fading 

gain between PU and SU, and h(n) represents the fading 

coefficient that follows the α-κ-μ fading distribution. The 

PU’s sent signal is denoted by x(n), between interfering 

sources the SU βi represents the fading gain, and d(n) the 

fading coefficient is determined by the distribution α-κ-μ 

fading. The signal transmitted by the interfering sources is 

represented as y(n), whereas G(n) denotes the presence of 

additive white Gaussian noise (AWGN) characterized by 

a zero mean and a variance of σ². Assume that there exists 

a set of Q transmitting primary users (PUs), denoted as 

PUq, and each PUq is associated with a channel order P 

concerning every secondary user (SU). Assuming that the 

transmitted PU signal is also examined in N consecutive 

samples, the signal and noise vectors corresponding to 

these samples can be defined as [13]: 
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The system of equations can be represented in matrix 

form as: 

( ) ( ) ( )N Ns n Hx n G n= +                  (8) 

The above expression uses the MN×(Q+NQ) order 

matrix H, which is defined as: 

1 2 3, , ,..., QH H H H H                (9) 

Since HQ is an MN×(Q+N)-order matrix in the above 

statement, it may be written as: 
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 The received signals' statistical covariance matrices can 

then be expressed as:  

2H

s x n MNR HR H I= +                       (11) 

In the aforementioned equation, an identity matrix with 

dimensions MN is denoted by the symbol IMN. The notation 

(.)H signifies the Hermitian transpose operation, and 𝑅𝑠 =
𝐸[𝑋𝑁(𝑛)𝑋𝑁

𝐻(𝑛)]. 
The covariance matrix Rs eigenvalue decomposition can 

be written as follows: 

H

sR VDV=                   (12) 

The eigenvectors of Rs are represented by the unitary 

matrix V, and their corresponding eigenvalues are 

represented by the diagonal elements of the diagonal 

matrix D in the above equation. We can use D’s diagonal 

elements to find its eigenvalues. 

( ),i D i i =                       (13) 

Here, λi denotes the ith eigenvalue. Let Ls = [ λmin, λ1, λ2…, 

λmax]T be the signal feature vector. 

B. Cooperative Spectrum Sensing using the K-means 

Algorithm  

In the following section, the signal feature vector Ls will 

be subjected to classification using the K-means algorithm 

[14]. The purpose of this classification process is to 

determine whether there is a Primary User (PU) present 

and if the channel is available for usage by a Secondary 

User (SU). Consider the classifier's training feature vector 

to be �̅� = [ , 𝐿𝑠
2, 𝐿𝑠

3, … . . , 𝐿𝑠
𝑅], where R is the total number 

of feature vectors used during training and 𝐿𝑠
𝑟  is a vector of 

two-dimensional features. Let 𝐶𝑘 represent a class 

containing all features vector in the kth class, where 𝑘 =
1,2,3, … . , 𝐾.  

After fixing the centroid of cluster C1 to the mean of 𝐿𝑠
𝑟   

on the condition of H0, the centroids (𝜙𝑘) of the other 

clusters 𝐶𝑘 can be found using the formula 
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In the given context, 𝑛(.) denotes the cardinality 

parameter, as a mathematical constant, the ϴ (distortion) 

in the K-means clustering method is defined as the product 

of the squared distances between each cluster and its 

centroids, divided by the total number of clusters. The 

value of K is defined as 
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Let ‖. ‖  denote the p2-norm. The utilization of 

clustering techniques in this work aims to mitigate 

distortion. Therefore, the definition of an optimal objective 

function is: 
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After training using the K-means clustering approach, 

we can check the channel’s availability with Eq. (17)  
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where δ is a classification threshold and �̂� is the set of test 

feature vectors. If the above equation is true for �̂�, then the 

channel is unavailable; otherwise, it may be available. 

C. The α-k-µ Fading Channel 

Signal strength fluctuations across a wireless link are 

described by α-k-µ fading channel, a sophisticated 

mathematical model. The comprehension of statistical 

characteristics of the wireless channel is particularly 

advantageous in situations such as spectrum sensing. This 

knowledge can greatly assist in the development and 

implementation of cognitive radio applications and 

dynamic spectrum access. This fading model’s non-linear 

characteristics of small-scale Line of sight can be 

accurately reflected in a variety of contexts. It can also be 

utilized to study spectrum sensing's short-range and real-

time properties in the presence of severe fading. The 

expression of an envelope pdf for the α-k-µ model is given 

by [15]: 
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In the above equation non-linear characteristics of the 

propagation medium are represented by parameter α, the 

symbol k represents the relative strengths of the scattering 

and dominating waves, whereas the value µ represents 

multipath fading components, and the first-order Bessel 

function of interference by symbol I. The pdf SNR for α-

k-µ channel can be calculated as: 
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The symbols γ and γ̅ in the preceding equation represent 

SNR and Average SNR, respectively. The Nakagami-m 

fading channel, the Rician fading channel, and the 

Rayleigh fading channel are all special examples of the 

more generic α-k-µ channel, whose parameter ranges are 

tabulated in Table I. 

TABLE I. NAKAGAMI-M, RICIAN, AND RAYLEIGH FADING 

CHARACTERISTICS 

Type of Channel 
α-k-µ Channel Parameters 

 α k µ 

Rayleigh 2 k→0 1 

Rician 2 3 1 

Nakagami-m 2 k→0 3 

k-µ 2 k ≥ 0 µ > 0 

    

 

IV. RESULT AND DISCUSSION 

By employing K-means clustering, the system can 

categorize and group diverse data effectively, allowing for 

a more dynamic and flexible spectrum sensing technique. 

Cooperative sensing based on eigenvalues simultaneously 

enhances the accuracy and reliability of spectrum 

occupancy detection. These methodologies provide 

adaptable utility throughout a wide range of geographical 

spectrums, guaranteeing resilient operation in diverse 

environmental circumstances and radio frequency 

environments. The integration of eigenvalue-based 

sensing and K-means clustering not only enhances the 

efficient use of spectrum but also enables smooth 

adjustment, rendering it a valuable resolution for 

forthcoming wireless communication systems functioning 

in dynamic real-world environments. 

To carry out the simulation study, we utilized a total of 

1000 samples, with 500 samples allocated for testing and 

the remaining 500 samples for training. For the primary 

user transmission, we employed BPSK modulation with a 

power level of unity, and the α-k-μ channel for PU-to-SU 

communication. The classifier is trained using the feature 

vectors, which are eigenvalue estimations, obtained from 

the SU node. The feature vector is generated using a set of 

M = 2 and N = 500 samples in total, having a −10 dB 

expected average Signal-to-Noise Ratio (SNR). 

As illustrated in Fig. 1, the evaluation of Cooperative 

Spectrum Sensing (CSS) using the K-means algorithm 

operates in an α-k-µ channel environment involving PUs 

and SUs. Eigenvalues and energy estimates are utilized as 

feature vectors in this analysis. The simulation parameters 

are set as follows: N = 500, K = 2, μ = 3, α = 1.2, k close 

to 0, and an average Signal-to-Noise Ratio (SNR) of 

−10dB. The detection probability in K-means-based CSS 

rapidly rises with an increase in the false alarm probability, 

as seen in Fig. 1. This measure ensures that the second user 

is provided with precise and reliable data regarding the 

availability of channels. The performance of estimating 

methods based on eigenvalues and energy values 

demonstrates a high degree of comparability. However, the 
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estimation based on eigenvalues tends to provide 

marginally better performance in comparison to energy 

values [16]. Based on the simulation findings, it is shown 

that when the false alarm probability is set at 0.4, the 

eigenvalue detection technique demonstrates a probability 

of detection of 0.977. Conversely, the energy detection 

approach exhibits a little lower probability of detection at 

0.932.  

 

Fig. 1. Analyzing ROC performance for CSS in the fading channel α-k-

µ using Eigenvalue and Energy detection feature vectors with M = 2. 

The effectiveness of CSS utilizing k-means algorithm 

based on eigenvalue and Energy detection methods is 

evaluated in Fig. 2. This evaluation is conducted in three 

different fading scenarios, namely Nakagami-m (with α = 

2, k approximately equal to 0, and µ = 3), Rayleigh (with 

α = 2, k tending to 0, and µ = 1), and Rician (with α = 2, k 

equal to 3, and µ = 1). The simulations were performed 

using an average signal-to-noise ratio (SNR) of -10dB, a 

sample size (N) of 500, and a parameter (K) set to 3. The 

results of the simulations indicate that the Rician channel 

demonstrates a greater probability of detection in 

comparison to other channels. The following detection 

probabilities are obtained from the three fading channels 

for a given false alarm probability (0.2): Rician channels 

have detection probabilities of 0.98 for eigenvalues and 

0.97 for energy detection respectively. In a similar vein, it 

can be shown that the Rayleigh channel exhibits a 

probability of detection of 0.94 for eigenvalue detection 

and 0.93 for energy detection. Conversely, the Nakagami-

m channel demonstrates a detection probability of 0.922 

for eigenvalue detection and 0.89 for energy detection. It 

is worth noting that the performance of eigenvalue-based 

estimates and energy value-based estimation exhibits a 

high degree of similarity. However, in terms of 

performance, the eigenvalue-based estimate demonstrates 

a modest advantage over energy values in all three channel 

cases. 

 

Fig. 2. Performance comparison in α-k-µ fading channels with different 

fading circumstances for K-means Cooperative Spectrum Sensing (CSS) 

using energy detection and eigenvalues, with M = 2. 

The effectiveness of k-means-based CSS with 

eigenvalue and energy detection techniques is evaluated in 

α-k-µ (with α = 1.2, k about 0, and µ = 3) and k-µ (with k 

approximately 0 and µ = 3) channels are being considered 

at a SNR of -10dB. The number of samples (N) is 500, and 

the number of channels (K) is 2. Fig. 3 presents a graphical 

representation that effectively demonstrates the 

relationship between false alarm probability and the 

probability of successful detection. The comparison is 

made within the context of the α-k-µ fading model. 

Regarding detection probability, the outcomes obtained 

using the CSS method that relies on k-means clustering 

surpass those of the k-µ fading channel. This conclusion 

holds for both eigenvalue and energy detection methods. 

Furthermore, the eigenvalue technique consistently 

produces improved results in both channel scenarios. The 

graphical representation demonstrates that the 

performance of eigenvalue detection in the presence of a 

k-µ fading channel is comparable to that of the energy 

detection approach in the presence of an α-k-µ channel.  

Using eigenvalue and energy detection, Fig. 4 shows 

how well k-means-based CSS performs for a range of 

cluster values in the α-k-µ and k-µ channels. The graph 

exhibits a noticeable rise in the probability of detection as 

the values of K increase in both scenarios. Moreover, it is 

evident that the α-k-µ channel continuously outperforms 

the k-µ channel. Furthermore, it can be observed that the 

eigenvalue detection method demonstrates enhanced 

performance in comparison to energy value detection in 

both scenarios, particularly when the number of clusters is 

increased. 
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Fig. 3. Comparison of CSS performance conducted in α-k-µ and k-µ 

channels, considering M = 2, and employing K-means based on 

eigenvalues and energy detection. 

 

Fig. 4. Comparing the effectiveness of eigenvalue and energy detection 

approaches with K-means-based CSS in k-µ and α-k-µ fading channels 

(M = 2, average SNR = −10 dB), with different cluster values (K = 3 and 

11). 

V. CONCLUSION 

In conclusion, the proposed method which combines K-

means with eigenvalue-based learning, the α-κ-μ fading 

model has demonstrated promising outcomes for 

cooperative spectrum sensing. The ROC (receiver 

operating characteristic) curves are employed as a criterion 

to assess the effectiveness of our suggested strategy 

through in-depth simulations and analysis. The 

comparison showed that the proposed method has 

significant benefits over the existing cooperative spectrum 

sensing approach that uses k-means-based energy 

detection for various fading channels. According to the 

simulated results, our method achieves a false alarm 

probability of less than 5% together with a detection 

probability of more than 90% with a −10dB SNR. The 

results emphasize the efficiency of our suggested approach 

in improving the reliability of cooperative spectrum 

sensing, which is essential for dealing with the increasing 

need for radio spectrum in the presence of limited 

availability. 
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