Home
Author Guide
Editor Guide
Reviewer Guide
Special Issues
Special Issue Introduction
Special Issues List
Topics
Published Issues
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2010
2009
2008
2007
2006
journal menu
Aims and Scope
Editorial Board
Indexing Service
Article Processing Charge
Open Access Policy
Publication Ethics
Digital Preservation Policy
Editorial Process
Subscription
Contact Us
General Information
ISSN:
1796-2021 (Online); 2374-4367 (Print)
Abbreviated Title:
J. Commun.
Frequency:
Monthly
DOI:
10.12720/jcm
Abstracting/Indexing:
Scopus
;
DBLP
;
CrossRef
,
EBSCO
,
Google Scholar
;
CNKI,
etc.
E-mail questions
or comments to
editor@jocm.us
Acceptance Rate:
27%
APC:
800 USD
Average Days to Accept:
88 days
3.4
2023
CiteScore
51st percentile
Powered by
Article Metrics in Dimensions
Editor-in-Chief
Prof. Maode Ma
College of Engineering, Qatar University, Doha, Qatar
I'm very happy and honored to take on the position of editor-in-chief of JCM, which is a high-quality journal with potential and I'll try my every effort to bring JCM to a next level...
[Read More]
What's New
2024-10-16
Vol. 19, No. 10 has been published online!
2024-08-20
Vol. 19, No. 8 has been published online!
2024-07-22
Vol. 19, No. 7 has been published online!
Home
>
Published Issues
>
2019
>
Volume 14, No. 6, June 2019
>
An Outlier Detection Method to Improve Gathered Datasets for Network Behavior Analysis in IoT
Amin Shahraki and Øystein Haugen
Faculy of Computer Science, Østfold University College, Halden 1783, Norway
Abstract—
Outlier detection is a subfield of data mining to determine data points that notably deviate from the rest of a dataset. Their deviation can indicate that these data points are generated by errors and should therefore be removed or repaired. There are many reasons for outliers in a network dataset such as human or instrument errors, noise or system behavior changes. On the other side, Network Behavior Analysis (NBA) is a way to monitor traffic and recognize unusual actions in a network. Analyzing data trends in NBA methods is a common way to interpret network situation. Outliers can deviate and produce erroneous trends that influence the results of the NBA methods. This paper presents an approach that based on a method for trend detection divides the data set into subsets where contextual outliers are discovered. The outliers can then be removed to have a clear dataset that better shows the network behavior when using NBA methods. Increasing the accuracy and reliability are the goals of our method. We compare the proposed method with the Hampel method on simulated IoT network data.
Index Terms
—Contextual outlier detection, trend change analysis, network behavior analysis, poisson distribution datasets, internet of things.
Cite: Amin Shahraki and Øystein Haugen, "An Outlier Detection Method to Improve Gathered Datasets for Network Behavior Analysis in IoT," Journal of Communications, vol. 14, no. 6, pp. 455-462, 2019. Doi: 10.12720/jcm.14.6.455-462.
4-ICCDE2018-337
PREVIOUS PAPER
A Brief Review on MQTT’s Security Issues within the Internet of Things (IoT)
NEXT PAPER
Multi Zone-Based Surface Air Quality Monitoring via Internet of Things