Home
Author Guide
Editor Guide
Reviewer Guide
Special Issues
Special Issue Introduction
Special Issues List
Topics
Published Issues
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2010
2009
2008
2007
2006
journal menu
Aims and Scope
Editorial Board
Indexing Service
Article Processing Charge
Open Access Policy
Publication Ethics
Digital Preservation Policy
Editorial Process
Subscription
Contact Us
General Information
ISSN:
1796-2021 (Online); 2374-4367 (Print)
Abbreviated Title:
J. Commun.
Frequency:
Monthly
DOI:
10.12720/jcm
Abstracting/Indexing:
Scopus
;
DBLP
;
CrossRef
,
EBSCO
,
Google Scholar
;
CNKI,
etc.
E-mail questions
or comments to
editor@jocm.us
Acceptance Rate:
27%
APC:
800 USD
Average Days to Accept:
88 days
3.4
2023
CiteScore
51st percentile
Powered by
Article Metrics in Dimensions
Editor-in-Chief
Prof. Maode Ma
College of Engineering, Qatar University, Doha, Qatar
I'm very happy and honored to take on the position of editor-in-chief of JCM, which is a high-quality journal with potential and I'll try my every effort to bring JCM to a next level...
[Read More]
What's New
2024-11-25
Vol. 19, No. 11 has been published online!
2024-10-16
Vol. 19, No. 10 has been published online!
2024-08-20
Vol. 19, No. 8 has been published online!
Home
>
Published Issues
>
2021
>
Volume 16, No. 2, February 2021
>
An FPGA Scalable Software-Defined Radio Platform for UAS Communications Research
Angelo Manco and Vittorio U. Castrillo
CIRA Italian Aerospace Research Centre, Italy
Abstract
—In the framework of modern Unmanned Aerial System (UAS) ground-board communications, a data-link system should provide with the following features [1]: multiband and adaptive modulations for responding to channel conditions changes and multi-standard interoperability, interferences resilience with a secure physical layer, incorporation of an air-to-air link complementary to the classical air-to-ground links. Varying the available communication functions to provide the above features without the need to substitute on-board components is a desired target. For this purpose, a Field Programmable Gate Aray (FPGA) scalable Software Defined Radio hardware Platform (SDRP) and its control and baseband signal processing architecture have been developed. The platform is composed by means of three boards which provide respectively the power supply, an FPGA based processing core and the radio frequency front-end. The control and baseband signal processing architecture, implemented on the FPGA, is designed with an application-independent section, working as a base reference design, and a reconfigurable section that implements communication functions and algorithms. The overall platform, at the board and FPGA architecture level, has been designed considering scalability and modularity as key features. Thanks to this platform a data-link which responds to the above target can be easily implemented. As a case study a reconfigurable data-link between a UAS and a Ground Control Station (GCS), designed to establish reliable communication in all the phases of a flight (parking, taxiing, taking off, cruising and landing), is presented.
Index Terms
—Field-Programmable Gate Array (FPGA), Unmanned Aerial System (UAS), Software Defined Radio (SDR)
Cite: Angelo Manco and Vittorio U. Castrillo, "An FPGA Scalable Software-Defined Radio Platform for UAS Communications Research," Journal of Communications vol. 16, no. 2, pp. 42-51, February 2021. Doi: 10.12720/jcm.16.2.42-51
Copyright © 2021 by the authors. This is an open access article distributed under the Creative Commons Attribution License (
CC BY-NC-ND 4.0
), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.
1-JCM170671
PREVIOUS PAPER
First page
NEXT PAPER
Three Different Compact Elliptical Slot Ultra -Wide band Antennas for Wireless Communication Applications