Home
Author Guide
Editor Guide
Reviewer Guide
Special Issues
Special Issue Introduction
Special Issues List
Topics
Published Issues
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2010
2009
2008
2007
2006
journal menu
Aims and Scope
Editorial Board
Indexing Service
Article Processing Charge
Open Access Policy
Publication Ethics
Digital Preservation Policy
Editorial Process
Subscription
Contact Us
General Information
ISSN:
1796-2021 (Online); 2374-4367 (Print)
Abbreviated Title:
J. Commun.
Frequency:
Monthly
DOI:
10.12720/jcm
Abstracting/Indexing:
Scopus
;
DBLP
;
CrossRef
,
EBSCO
,
Google Scholar
;
CNKI,
etc.
E-mail questions
or comments to
editor@jocm.us
Acceptance Rate:
27%
APC:
800 USD
Average Days to Accept:
88 days
3.4
2023
CiteScore
51st percentile
Powered by
Article Metrics in Dimensions
Editor-in-Chief
Prof. Maode Ma
College of Engineering, Qatar University, Doha, Qatar
I'm very happy and honored to take on the position of editor-in-chief of JCM, which is a high-quality journal with potential and I'll try my every effort to bring JCM to a next level...
[Read More]
What's New
2024-11-25
Vol. 19, No. 11 has been published online!
2024-10-16
Vol. 19, No. 10 has been published online!
2024-08-20
Vol. 19, No. 8 has been published online!
Home
>
Published Issues
>
2021
>
Volume 16, No. 2, February 2021
>
Comparison of Path Loss Prediction Models for UAV and IoT Air-to-Ground Communication System in Rural Precision Farming Environment
Sarun Duangsuwan
1
and Myo Myint Maw
2
1. Information Engineering, King Mongkut’s Institute of Technology Ladkrabang, Prince of Chumphon Campus, 17/1 Chumcoo District, Pathio, Chumphon, Thailand
2. Department of Computer Engineering and Information Technology (CEIT), Mandalay Technological University (MTU), Patheingyi Township, Mandalay, Myanmar
Abstract
—The comparison of path loss model for the unmanned aerial vehicle (UAV) and Internet of Things (IoT) air-to-ground communication system was proposed for rural precision farming. Due to the uncertainty of propagation channel in rural precision farming environment, the comparison of path loss prediction was investigated by the conventional particle swarm optimization (PSO) algorithms: PSO (exponential or Exp), PSO (polynomial or Poly) and the machine learning algorithms: k-nearest neighbor (k-NN), and random forest, are exploited to accurate the path loss models on the basic of the measured dataset. Meanwhile, the empirical model in the rural precision farming was considered. By using the machine learning-based algorithms, the coefficient of determination (R-squared: R2) and root mean squared error (RMSE) were evaluated as highly accuracy and precision more than the conventional PSO algorithms. According to the results, the random forest method was able to perform more than other methods. It has the smallest prediction errors.
Index Terms
—UAV, IoT, air-to-ground communication, path loss, machine learning methods, rural precision farming environment
Cite: Sarun Duangsuwan and Myo Myint Maw, "Comparison of Path Loss Prediction Models for UAV and IoT Air-to-Ground Communication System in Rural Precision Farming Environment," Journal of Communications vol. 16, no. 2, pp. 60-66, February 2021. Doi: 10.12720/jcm.16.2.60-66
Copyright © 2021 by the authors. This is an open access article distributed under the Creative Commons Attribution License (
CC BY-NC-ND 4.0
), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.
3-JCM170654
PREVIOUS PAPER
Three Different Compact Elliptical Slot Ultra -Wide band Antennas for Wireless Communication Applications
NEXT PAPER
Self-Adaptive Rectenna with High Efficiency over a Wide Dynamic Range for RF Energy Harvesting Applications