Home
Author Guide
Editor Guide
Reviewer Guide
Special Issues
Special Issue Introduction
Special Issues List
Topics
Published Issues
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2010
2009
2008
2007
2006
journal menu
Aims and Scope
Editorial Board
Indexing Service
Article Processing Charge
Open Access Policy
Publication Ethics
Digital Preservation Policy
Editorial Process
Subscription
Contact Us
General Information
ISSN:
1796-2021 (Online); 2374-4367 (Print)
Abbreviated Title:
J. Commun.
Frequency:
Monthly
DOI:
10.12720/jcm
Abstracting/Indexing:
Scopus
;
DBLP
;
CrossRef
,
EBSCO
,
Google Scholar
;
CNKI,
etc.
E-mail questions
or comments to
editor@jocm.us
Acceptance Rate:
27%
APC:
800 USD
Average Days to Accept:
88 days
3.4
2023
CiteScore
51st percentile
Powered by
Article Metrics in Dimensions
Editor-in-Chief
Prof. Maode Ma
College of Engineering, Qatar University, Doha, Qatar
I'm very happy and honored to take on the position of editor-in-chief of JCM, which is a high-quality journal with potential and I'll try my every effort to bring JCM to a next level...
[Read More]
What's New
2024-11-25
Vol. 19, No. 11 has been published online!
2024-10-16
Vol. 19, No. 10 has been published online!
2024-08-20
Vol. 19, No. 8 has been published online!
Home
>
Published Issues
>
2021
>
Volume 16, No. 2, February 2021
>
Self-Adaptive Rectenna with High Efficiency over a Wide Dynamic Range for RF Energy Harvesting Applications
Eman M. Abdelhady
1
, Hala M. Abdelkader
2
, and Amr A. Al-Awamry
1
1. Benha University, 13512 Benha, Egypt
2. Benha University, 11629 Shoubra, Egypt
Abstract
—This paper presents a novel simple adaptive and efficient rectenna with automatic power distribution to achieve high radio frequency-direct current (RF-DC) power conversion efficiency (PCE) over a wide range of RF input power. This design employs two rectifier paths operating at low and high-power levels, respectively. Automatic power distribution method exploits the power-dependent input impedance of the rectifier and routes the RF input power into the assigned path according to the input power level. A distinctive enhancement in the rectifier dynamic range is achieved when dividing the high path power equally into two or more parallel diode cells, which helps the high path to camouflage the diode breakdown voltage in case of high input power level. The proposed adaptive design applies two different rectifier topologies, one by using shunt diode topology and the other by using voltage doubler topology at 2.45 GHz. Simulated PCE of this work is kept above 50% over a range of 25.1 dBm from -5.7 to 19.4 dBm of RF input power using shunt diode topology and over a range of 30 dBm from -6.3 to 23.7 dBm of RF input power using voltage doubler topology.
Index Terms
—RF energy harvesting, rectifier, automatic power distribution, power conversion efficiency
Cite: Eman M. Abdelhady, Hala M. Abdelkader, and Amr A. Al-Awamry, "Self-Adaptive Rectenna with High Efficiency over a Wide Dynamic Range for RF Energy Harvesting Applications," Journal of Communications vol. 16, no. 2, pp. 67-75, February 2021. Doi: 10.12720/jcm.16.2.67-75
Copyright © 2021 by the authors. This is an open access article distributed under the Creative Commons Attribution License (
CC BY-NC-ND 4.0
), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.
4-JCM170646
PREVIOUS PAPER
Comparison of Path Loss Prediction Models for UAV and IoT Air-to-Ground Communication System in Rural Precision Farming Environment
NEXT PAPER
Limited-Search Chase Decoding Algorithm for LDPC Coded Underwater Acoustic Multiuser Channels