Home
Author Guide
Editor Guide
Reviewer Guide
Special Issues
Special Issue Introduction
Special Issues List
Topics
Published Issues
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2010
2009
2008
2007
2006
journal menu
Aims and Scope
Editorial Board
Indexing Service
Article Processing Charge
Open Access Policy
Publication Ethics
Digital Preservation Policy
Editorial Process
Subscription
Contact Us
General Information
ISSN:
1796-2021 (Online); 2374-4367 (Print)
Abbreviated Title:
J. Commun.
Frequency:
Monthly
DOI:
10.12720/jcm
Abstracting/Indexing:
Scopus
;
DBLP
;
CrossRef
,
EBSCO
,
Google Scholar
;
CNKI,
etc.
E-mail questions
or comments to
editor@jocm.us
Acceptance Rate:
27%
APC:
800 USD
Average Days to Accept:
88 days
3.4
2023
CiteScore
51st percentile
Powered by
Article Metrics in Dimensions
Editor-in-Chief
Prof. Maode Ma
College of Engineering, Qatar University, Doha, Qatar
I'm very happy and honored to take on the position of editor-in-chief of JCM, which is a high-quality journal with potential and I'll try my every effort to bring JCM to a next level...
[Read More]
What's New
2024-10-16
Vol. 19, No. 10 has been published online!
2024-08-20
Vol. 19, No. 8 has been published online!
2024-07-22
Vol. 19, No. 7 has been published online!
Home
>
Published Issues
>
2021
>
Volume 16, No. 3, March 2021
>
Energy Harvesting Enabled Full-Duplex Cooperative Relaying System over Fisher-Snedecor F-Distribution Fading Channel
Kehinde O. Odeyemi and Pius A. Owolawi
Department of Computer Systems Engineering, Tshwane University of Technology, Pretoria-0001, South Africa
Abstract
—In this paper, the performance of an Energy Harvesting (EH) enabled full-duplex cooperative decode-and-forward (DF) relaying system is investigated over the Fisher-Snedecor F-fading channel. The system energy-constrained relay unit utilizes time-switching relay protocol for scavenging energy from the source signal and information transmission to the destination. To quantify the system performance, the exact analytical closed-form expression for the system outage probability is derived, and then used to obtain the analytical expression for the average throughput of delay-limited transmission mode. Moreover, the exact closed-form expression for the system Ergodic capacity is derived through which the average delay-tolerant throughput is determined for the system. In addition, the results demonstrate the impact of fading and shadowing severity on the system performance. It also is noticeable from the results that the performance of system is strongly affected by the loop back interference from the relay node. Finally, the accuracy of the derived analytical expressions is then validated through the Monte-Carlo simulation.
Index Terms
—Full-duplex, Energy harvesting, Fisher-Snedecor fading, decode-and-forward relaying
Cite: Kehinde O. Odeyemi and Pius A. Owolawi, "Energy Harvesting Enabled Full-Duplex Cooperative Relaying System over Fisher-Snedecor F-Distribution Fading Channel," Journal of Communications vol. 16, no. 3, pp. 82-90, March 2021. Doi: 10.12720/jcm.16.3.82-90
Copyright © 2021 by the authors. This is an open access article distributed under the Creative Commons Attribution License (
CC BY-NC-ND 4.0
), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.
1-JCM170639
PREVIOUS PAPER
First page
NEXT PAPER
Graph-Based Detection and LDPC Decoding over 2D Intersymbol Interference Channels