Home
Author Guide
Editor Guide
Reviewer Guide
Special Issues
Special Issue Introduction
Special Issues List
Topics
Published Issues
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2010
2009
2008
2007
2006
journal menu
Aims and Scope
Editorial Board
Indexing Service
Article Processing Charge
Open Access Policy
Publication Ethics
Digital Preservation Policy
Editorial Process
Subscription
Contact Us
General Information
ISSN:
1796-2021 (Online); 2374-4367 (Print)
Abbreviated Title:
J. Commun.
Frequency:
Monthly
DOI:
10.12720/jcm
Abstracting/Indexing:
Scopus
;
DBLP
;
CrossRef
,
EBSCO
,
Google Scholar
;
CNKI,
etc.
E-mail questions
or comments to
editor@jocm.us
Acceptance Rate:
27%
APC:
800 USD
Average Days to Accept:
88 days
3.4
2023
CiteScore
51st percentile
Powered by
Article Metrics in Dimensions
Editor-in-Chief
Prof. Maode Ma
College of Engineering, Qatar University, Doha, Qatar
I'm very happy and honored to take on the position of editor-in-chief of JCM, which is a high-quality journal with potential and I'll try my every effort to bring JCM to a next level...
[Read More]
What's New
2024-10-16
Vol. 19, No. 10 has been published online!
2024-08-20
Vol. 19, No. 8 has been published online!
2024-07-22
Vol. 19, No. 7 has been published online!
Home
>
Published Issues
>
2021
>
Volume 16, No. 7, July 2021
>
SDN Enabled DDoS Attack Detection and Mitigation for 5G Networks
Bhulok Aryal, Robert Abbas, and Iain B. Collings
Macquarie University, Sydney, Australia
Abstract
—This paper proposes a hybrid technique for distributed denial-of-service (DDoS) attack detection that combines statistical analysis and machine learning, with software defined networking (SDN) security. Data sets are analyzed in an iterative approach and compared to a dynamic threshold. Sixteen features are extracted, and machine learning is used to examine correlation measures between the features. A dynamically configured SDN is employed with software defined security (SDS), to provide a robust policy framework to protect the availability and integrity, and to maintain privacy of all the networks with quick response remediation. Machine learning is further employed to increase the precision of detection. This increases the accuracy from 87/88% to 99.86%, with reduced false positive ratio (FPR). The results obtained based on experimental data-sets outperformed existing techniques.
Index Terms
—DDoS, Software Defined Networking (SDN), 5G Security, Internet of Things (IoT) security, Machine Learning
Cite: Bhulok Aryal, Robert Abbas, and Iain B. Collings, "SDN Enabled DDoS Attack Detection and Mitigation for 5G Networks," Journal of Communications vol. 16, no. 7, pp. 267-275, July 2021. Doi: 10.12720/jcm.16.7.267-275
Copyright © 2021 by the authors. This is an open access article distributed under the Creative Commons Attribution License (
CC BY-NC-ND 4.0
), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.
3-JCM170742
PREVIOUS PAPER
Spectrum Sensing on High Density Cognitive Radio Vehicular Ad Hoc Network
NEXT PAPER
WLAN Interference Identification Using a Convolutional Neural Network for Factory Environments