Home
Author Guide
Editor Guide
Reviewer Guide
Special Issues
Special Issue Introduction
Special Issues List
Topics
Published Issues
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2010
2009
2008
2007
2006
journal menu
Aims and Scope
Editorial Board
Indexing Service
Article Processing Charge
Open Access Policy
Publication Ethics
Digital Preservation Policy
Editorial Process
Subscription
Contact Us
General Information
ISSN:
1796-2021 (Online); 2374-4367 (Print)
Abbreviated Title:
J. Commun.
Frequency:
Monthly
DOI:
10.12720/jcm
Abstracting/Indexing:
Scopus
;
DBLP
;
CrossRef
,
EBSCO
,
Google Scholar
;
CNKI,
etc.
E-mail questions
or comments to
editor@jocm.us
Acceptance Rate:
27%
APC:
800 USD
Average Days to Accept:
88 days
3.4
2023
CiteScore
51st percentile
Powered by
Article Metrics in Dimensions
Editor-in-Chief
Prof. Maode Ma
College of Engineering, Qatar University, Doha, Qatar
I'm very happy and honored to take on the position of editor-in-chief of JCM, which is a high-quality journal with potential and I'll try my every effort to bring JCM to a next level...
[Read More]
What's New
2024-10-16
Vol. 19, No. 10 has been published online!
2024-08-20
Vol. 19, No. 8 has been published online!
2024-07-22
Vol. 19, No. 7 has been published online!
Home
>
Published Issues
>
2021
>
Volume 16, No. 10, October 2021
>
Enhanced Error Reduction of Signal Power Loss During Electromagnetic Propagation: Architectural Composition and Learning Rate Selection
Virginia C. Ebhota and Viranjay M. Srivastava
Department of Electronic Engineering, Howard College, University of KwaZulu-Natal, Durban-4041, South Africa
Abstract
—This research work analyses the effect of the architectural composition of Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN) combined with the effect of the learning rate for effective prediction of signal power loss during electromagnetic signal propagation. A single hidden layer and two hidden layers of MLP ANN have been considered. Different configurations of the neural network architecture ranging from 4 to 100 for both MLP networks have been analyzed. The required hidden layer neurons for optimal training of a single layer multi-layer network were 40 neurons with 0.99670 coefficient of correlation and 1.28020 standard deviations, while [68 72] trained two hidden layers multi-layer perceptron with 0.98880 coefficient of correlation and standard deviation of 1.42820. Different learning rates were also adopted for the network training. The results further validate better MLP neural network training for signal power loss prediction using single-layer perceptron network compared to two hidden layers perceptron network with the coefficient of correlation of 0.99670 for single-layer network and 0.9888 for two hidden layers network. Furthermore, the learning rate of 0.003 shows the best training capability with lower mean squared error and higher training regression compared to other values of learning rate used for both single layer and two hidden layers perceptron MLP networks.
Index Terms
—Architectural composition, Learning rate, Error reduction, Signal power loss, Bayesian Regularization, MLP
Cite: Virginia C. Ebhota and Viranjay M. Srivastava, "Enhanced Error Reduction of Signal Power Loss During Electromagnetic Propagation: Architectural Composition and Learning Rate Selection," Journal of Communications vol. 16, no. 10, pp. 450-456, October 2021. Doi: 10.12720/jcm.16.10.450-456
Copyright © 2021 by the authors. This is an open access article distributed under the Creative Commons Attribution License (
CC BY-NC-ND 4.0
), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.
6-JCM170751
PREVIOUS PAPER
Per User Based Interference Alignment for Uplink CoMP with Perfect CSI under Different Channel Models
NEXT PAPER
Low-cost Voice Based Braille Script Communication for Teaching Aid